DOI QR코드

DOI QR Code

Lung interstitial cells during alveolarization

  • Choi, Chang-Won (Department of Pediatrics, Seoul National University College of Medicine)
  • Received : 2010.11.16
  • Accepted : 2010.11.30
  • Published : 2010.12.15

Abstract

Recent progress in neonatal medicine has enabled survival of many extremely low-birth-weight infants. Prenatal steroids, surfactants, and non-invasive ventilation have helped reduce the incidence of the classical form of bronchopulmonary dysplasia characterized by marked fibrosis and emphysema. However, a new form of bronchopulmonary dysplasia marked by arrest of alveolarization remains a complication in the postnatal course of extremely low-birth-weight infants. To better understand this challenging complication, detailed alveolarization mechanisms should be delineated. Proper alveolarization involves the temporal and spatial coordination of a number of cells, mediators, and genes. Cross-talk between the mesenchyme and the epithelium through soluble and diffusible factors are key processes of alveolarization. Lung interstitial cells derived from the mesenchyme play a crucial role in alveolarization. Peak alveolar formation coincides with intense lung interstitial cell proliferation. Myofibroblasts are essential for secondary septation, a critical process of alveolarization, and localize to the front lines of alveologenesis. The differentiation and migration of myofibroblasts are strictly controlled by various mediators and genes. Disruption of this finely controlled mechanism leads to abnormal alveolarization. Since arrest in alveolarization is a hallmark of a new form of bronchopulmonary dysplasia, knowledge regarding the role of lung interstitial cells during alveolarization and their control mechanism will enable us to find more specific therapeutic strategies for bronchopulmonary dysplasia. In this review, the role of lung interstitial cells during alveolarization and control mechanisms of their differentiation and migration will be discussed.

Keywords

References

  1. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723-29. https://doi.org/10.1164/ajrccm.163.7.2011060
  2. Baraldi E, Filippone M. Chronic lung disease after premature birth. N Engl J Med 2007;357:1946-55. https://doi.org/10.1056/NEJMra067279
  3. Watterberg KL, Demers LM, Scott SM, Murphy S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 1996;97:210-5.
  4. Hilfer SR. Morphogenesis of the lung: control of embryonic and fetal branching. Annu Rev Physiol 1996;58:93-113. https://doi.org/10.1146/annurev.ph.58.030196.000521
  5. Metzger RJ, Klein OD, Martin GR, Krasnow MA. The branching programme of mouse lung development. Nature 2008;453:745-50. https://doi.org/10.1038/nature07005
  6. Burri PH. Structural aspects of prenatal and postnatal development and growth of the lung. In: MacDonald JA, ed. Lung growth and development. New York: Marcel Dekker, 1997:1-35.
  7. Kauffman SL, Burri PH, Weibel ER. The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 1974;180:63-76. https://doi.org/10.1002/ar.1091800108
  8. Weibel ER. Functional morphology of lung parenchyma. In: Macklem PT, Mead J, eds. Handbook of Physiology. Section 3: The respiratory system. Vol III. Part 1. Bethesda: American Physiological Society, 1986:89-111.
  9. Weibel ER. Bachofen H. The fiber scaffold of lung parenchyma. In: Crystal RG, West JB, eds. The Lung: Scientific Foundations. Vol 1. New York: Raven Press, 1991:787-94.
  10. Burri PH, Weibel ER. Ultrastructure and morphometry of the developing lung. In: Hodson WA, ed. Lung Biology in Health and Disease. Development of the Lung. Vol 6. New York: Marcel Dekker, 1977:215-68.
  11. Starcher BC. Elastic and the lung. Thorax 1986;41:577-85. https://doi.org/10.1136/thx.41.8.577
  12. McGowan SE, Torday JS. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu Rev Physiol 1997;59:43-62. https://doi.org/10.1146/annurev.physiol.59.1.43
  13. Brody JS, Kaplan NB. Proliferation of alveolar interstitial cells during postnatal lung growth. Evidence for two distinct populations of pulmonary fibroblasts. Am Rev Respir Dis 1983;127:763-70.
  14. Awonusonu F, Srinivasan S, Strange J, Al-Jumaily W, Bruce MC. Developmental shift in the relative percentages of lung fibroblast subsets: role of apoptosis postseptation. Am J Physiol 1999;277(4 Pt 1):L848-59.
  15. Torday J, Hua J, Slavin R. Metabolism and fate of neutral lipids of fetal lung fibroblast origin. Biochim Biophys Acta 1995;1254:198-206. https://doi.org/10.1016/0005-2760(94)00184-Z
  16. Vaccaro C, Brody JS. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat Rec 1978;192:467-79. https://doi.org/10.1002/ar.1091920402
  17. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999;277:C1-9. https://doi.org/10.1152/ajpcell.1999.277.1.C1
  18. Dickie R, Wang YT, Butler JP, Schulz H, Tsuda A. Distribution and quantity of contractile tissue in postnatal development of rat alveolar interstitium. Anat Rec (Hoboken) 2008;291:83-93. https://doi.org/10.1002/ar.20622
  19. Noguchi A, Reddy R, Kursar JD, Parks WC, Mecham RP. Smooth muscle isoactin and elastin in fetal bovine lung. Exp Lung Res 1989;15:537-52. https://doi.org/10.3109/01902148909069617
  20. Kim N, Vu TH. Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Res C Embryo Today 2006;78:80-9 https://doi.org/10.1002/bdrc.20062
  21. Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, et al. Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2007;292:L537-49. https://doi.org/10.1152/ajplung.00050.2006
  22. Bland RD. Neonatal chronic lung disease in the post-surfactant era. Biol Neonate 2005;88:181-91. https://doi.org/10.1159/000087581
  23. Yamada M, Kurihara H, Kinoshita K, Sakai T. Temporal expression of alpha-smooth muscle actin and drebrin in septal interstitial cells during alveolar maturation. J Histochem Cytochem 2005;53:735-44. https://doi.org/10.1369/jhc.4A6483.2005
  24. Maksvytis HJ, Niles RM, Simanovsky L, Minassian IA, Richardson LL, Hamosh M, et al. In vitro characteristics of the lipid-filled interstitial cell associated with postnatal lung growth: evidence for fibroblast heterogeneity. J Cell Physiol 1984;118:113-23. https://doi.org/10.1002/jcp.1041180203
  25. McGowan SE, Jackson SK, Doro MM, Olson PJ. Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts. Am J Physiol 1997;273:L1249-57.
  26. Nakamura Y, Fukuda S, Hashimoto T. Pulmonary elastic fibers in normal human development and in pathological conditions. Pediatr Pathol 1990;10:689-706. https://doi.org/10.3109/15513819009064705
  27. Prodhan P, Kinane TB. Developmental paradigms in terminal lung development. Bioessays 2002;24:1052-9. https://doi.org/10.1002/bies.10177
  28. Noguchi A, Firsching K, Kursar JD, Reddy R. Developmental changes of tropoelastin synthesis by rat pulmonary fibroblasts and effects of dexamethasone. Pediatr Res 1990;28:379-82. https://doi.org/10.1203/00006450-199010000-00015
  29. Bruce MC, Honaker CE. Transcriptional regulation of tropoelastin expression in rat lung fibroblasts: changes with age and hyperoxia. Am J Physiol 1998;274:L940-50. https://doi.org/10.1152/ajpcell.1998.274.4.C940
  30. Kida K, Thurlbeck WM. The effects of beta-aminopropionitrile on the growing rat lung. Am J Pathol 1980;101:693-710.
  31. Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J. Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 2005;167:927-36. https://doi.org/10.1016/S0002-9440(10)61183-2
  32. Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho SC, et al. Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Respir Crit Care Med 1999;159:945-58. https://doi.org/10.1164/ajrccm.159.3.9804027
  33. Le Cras TD, Hardie WD, Deutsch GH, Albertine KH, Ikegami M, Whitsett JA, et al. Transient induction of TGF-alpha disrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 2004;287:L718-29. https://doi.org/10.1152/ajplung.00084.2004
  34. Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, et al. Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 2008;294:L3-14. https://doi.org/10.1152/ajplung.00362.2007
  35. Benachi A, Delezoide AL, Chailley-Heu B, Preece M, Bourbon JR, Ryder T. Ultrastructural evaluation of lung maturation in a sheep model of diaphragmatic hernia and tracheal occlusion. Am J Respir Cell Mol Biol 1999;20:805-12. https://doi.org/10.1165/ajrcmb.20.4.3359
  36. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T. Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med 2001;163:152-7. https://doi.org/10.1164/ajrccm.163.1.2005069
  37. McGowan SE, Jackson SK, Olson PJ, Parekh T, Gold LI. Exogenous and endogenous transforming growth factors-beta influence elastin gene expression in cultured lung fibroblasts. Am J Respir Cell Mol Biol 1997;17:25-35. https://doi.org/10.1165/ajrcmb.17.1.2686
  38. Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, et al. Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 2004;173:2099-108. https://doi.org/10.4049/jimmunol.173.3.2099
  39. Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005;288:L683-91. https://doi.org/10.1152/ajplung.00298.2004
  40. Alejandre-Alcazar MA, Shalamanov PD, Amarie OV, Sevilla-Perez J, Seeger W, Eickelberg O, Morty RE. Temporal and spatial regulation of bone morphogenetic protein signaling in late lung development. Dev Dyn 2007;236:2825-35. https://doi.org/10.1002/dvdy.21293
  41. Sime PJ, O'Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol 2001;99:308-19. https://doi.org/10.1006/clim.2001.5008
  42. Bartram U, Speer CP. The role of transforming growth factor beta in lung development and disease. Chest 2004;125:754-65. https://doi.org/10.1378/chest.125.2.754
  43. Vicencio AG, Eickelberg O, Stankewich MC, Kashgarian M, Haddad GG. Regulation of TGF-beta ligand and receptor expression in neonatal rat lungs exposed to chronic hypoxia. J Appl Physiol 2002;93:1123-30. https://doi.org/10.1152/japplphysiol.00031.2002
  44. Rehan V, Torday J. Hyperoxia augments pulmonary lipofibroblast-to-myofibroblast transdifferentiation. Cell Biochem Biophys 2003;38:239-50. https://doi.org/10.1385/CBB:38:3:239
  45. Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, et al. PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 1996;85:863-73. https://doi.org/10.1016/S0092-8674(00)81270-2
  46. Lindahl P, Karlsson Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C. Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 1997;124:3943-53.
  47. Chetty A, Faber S, Nielsen HC. Epithelial-mesenchymal interaction and insulin-like growth factors in hyperoxic lung injury. Exp Lung Res 1999;25:701-18. https://doi.org/10.1080/019021499270015
  48. Liu H, Chang L, Rong Z, Zhu H, Zhang Q, Chen H, Li W. Association of insulin-like growth factors with lung development in neonatal rats. J Huazhong Univ Sci Technolog Med Sci 2004;24:162-5. https://doi.org/10.1007/BF02885419
  49. Chetty A, Cao GJ, Nielsen HC. Insulin-like Growth Factor-I signaling mechanisms, type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr Res 2006;60:389-94. https://doi.org/10.1203/01.pdr.0000238257.15502.f4
  50. Warburton D, Bellusci S. The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev 2004;5 Suppl A:S283-7. https://doi.org/10.1016/S1526-0542(04)90052-8
  51. Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007;30:1819-25. https://doi.org/10.1248/bpb.30.1819
  52. Powell PP, Wang CC, Horinouchi H, Shepherd K, Jacobson M, Lipson M, et al. Differential expression of fibroblast growth factor receptors 1 to 4 and ligand genes in late fetal and early postnatal rat lung. Am J Respir Cell Mol Biol 1998;19:563-72. https://doi.org/10.1165/ajrcmb.19.4.2994
  53. Weinstein M, Xu X, Ohyama K, Deng CX. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998;125:3615-23.
  54. Rich CB, Fontanilla MR, Nugent M, Foster JA. Basic fibroblast growth factor decreases elastin gene transcription through an AP1/cAMP-response element hybrid site in the distal promoter. J Biol Chem 1999;274:33433-9. https://doi.org/10.1074/jbc.274.47.33433
  55. Feres-Filho EJ, Menassa GB, Trackman PC. Regulation of lysyl oxidase by basic fibroblast growth factor in osteoblastic MC3T3-E1 cells. J Biol Chem 1996;271:6411-6. https://doi.org/10.1074/jbc.271.11.6411
  56. Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR. FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 2005;288:L43-51. https://doi.org/10.1152/ajplung.00096.2004
  57. Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA, et al. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 2004;36:782-801. https://doi.org/10.1016/j.freeradbiomed.2003.12.007
  58. Boucherat O, Benachi A, Barlier-Mur AM, Franco-Montoya ML, Martinovic J, Thebaud B, et al. Decreased lung fibroblast growth factor 18 and elastin in human congenital diaphragmatic hernia and animal models. Am J Respir Crit Care Med 2007;175:1066-77. https://doi.org/10.1164/rccm.200601-050OC
  59. Aaronson SA, Bottaro DP, Miki T, Ron D, Finch PW, Fleming TP, et al. Keratinocyte growth factor. A fibroblast growth factor family member with unusual target cell specificity. Ann N Y Acad Sci 1991;638:62-77. https://doi.org/10.1111/j.1749-6632.1991.tb49018.x
  60. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993;158:475-86. https://doi.org/10.1006/dbio.1993.1205
  61. Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, Jankov RP, Tanswell AK. A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res 2008;63:232-8. https://doi.org/10.1203/PDR.0b013e31815f6e3a
  62. Colvin JS, White AC, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001;128:2095-106.
  63. White AC, Lavine KJ, Ornitz DM. FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network. Development 2007;134:3743-52. https://doi.org/10.1242/dev.004879
  64. Foster JJ, Goss KL, George CL, Bangsund PJ, Snyder JM. Galectin-1 in secondary alveolar septae of neonatal mouse lung. Am J Physiol Lung Cell Mol Physiol 2006;291:L1142-9. https://doi.org/10.1152/ajplung.00054.2006
  65. Boucherat O, Franco-Montoya ML, Thibault C, Incitti R, Chailley-Heu B, Delacourt C, et al. Gene expression profiling in lung fibroblasts reveals new players in alveolarization. Physiol Genomics 2007;32:128-41. https://doi.org/10.1152/physiolgenomics.00108.2007
  66. Wang Z, Shu W, Lu MM, Morrisey EE. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol Cell Biol 2005;25:5022-30. https://doi.org/10.1128/MCB.25.12.5022-5030.2005

Cited by

  1. Lipopolysaccharide disrupts the directional persistence of alveolar myofibroblast migration through EGF receptor vol.302, pp.6, 2010, https://doi.org/10.1152/ajplung.00217.2011
  2. Cancer cachexia alters intracellular surfactant metabolism but not total alveolar surface area vol.138, pp.5, 2012, https://doi.org/10.1007/s00418-012-0995-3
  3. The Lung Alveolar Lipofibroblast: An Evolutionary Strategy Against Neonatal Hyperoxic Lung Injury vol.21, pp.13, 2014, https://doi.org/10.1089/ars.2013.5793
  4. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts vol.308, pp.4, 2010, https://doi.org/10.1152/ajplung.00119.2014
  5. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? vol.310, pp.4, 2010, https://doi.org/10.1152/ajplung.00122.2015
  6. Type IV collagen drives alveolar epithelial–endothelial association and the morphogenetic movements of septation vol.14, pp.1, 2010, https://doi.org/10.1186/s12915-016-0281-2
  7. Fra-2 negatively regulates postnatal alveolar septation by modulating myofibroblast function vol.313, pp.5, 2017, https://doi.org/10.1152/ajplung.00062.2017
  8. 14-3-3β Is necessary in the regulation of polarization and directional migration of alveolar myofibroblasts by lipopolysaccharide vol.46, pp.1, 2010, https://doi.org/10.1080/01902148.2019.1711464