DOI QR코드

DOI QR Code

초임계이산화탄소를 이용한 플로레닐계 에폭사이드로부터 카보네이트 화합물의 합성

Synthesis of a Fluorene Carbonate from Fluorenyl Epoxide Using Supercritical Carbon Dioxde

  • 심윤수 (영남대학교 이과대학 화학과) ;
  • 심재진 (영남대학교 이과대학 디스플레이화학공학부) ;
  • 나춘섭 (영남대학교 이과대학 화학과)
  • Sim, Yun-Soo (Department of Chemistry Chemical Engineering, Yeungnam University) ;
  • Shim, Jae-Jin (School of Display and Chemical Engineering, Yeungnam University) ;
  • Ra, Choon-Sup (Department of Chemistry Chemical Engineering, Yeungnam University)
  • 투고 : 2010.10.14
  • 심사 : 2010.11.04
  • 발행 : 2010.12.31

초록

스파이로 구조의 플로렌 에폭사이드, 9,9'-Bis(4-oxiranylmethoxyphenyl) fluorine (2)를 4차 암모니늄 또는 인산염을 촉매를 사용하여 이산화탄소와 반응시켜 5각고리의 플로렌 카보네이트 화합물로 전환시켰다. 이 과정은 주요 온실가스의 하나인 초임계 조건의 이산화탄소를 C-1 재료로 쓰고 동시에 반응용매로 이용하는 청정반응의 한 예로 볼 수 있다. 4차염의 종류와 반응조건이 반응에 미치는 영향에 대해 조사한 결과, 촉매의 음이온의 종류, 알킬 치환기, 반응온도가 반응에 큰 영향을 미치는 것으로 나타났다. 브롬화 사부틸 암모늄 촉매 (2 mol%)를 쓰고 플로레닐 에폭사이드를 75.9 bar 압력의 이산화탄소를 393 K에서 반응시켰을 때 플로레닐 카보네이트를 92% 수율로 얻을 수 있었다.

The carboxylation of the fluorenyl epoxide with a spiro framework, 9,9'-Bis(4-oxiranylmethoxyphenyl) fluorine (2) was catalyzed by some onium salts such as quaternary ammonium and phosphonium salts to produce the corresponding five-membered cyclic carbonate (3) in an efficient and environmentally benign fashion. The coupling reactions depend greatly on the kind of the halide anions and alkyl chain length of the onium salts. While the reaction was sensitive to the reaction temperature, the reaction trends suggest that the catalytic efficiency of the quaternary ammonium halides may correlate strongly with the melting points of the halides. The reactions using a catalytic amount (2 mol %) of quaternary ammonium bromide with an n-butyl chain at 75.9 bar of $CO_2$ and 393 K give the highest yield of the cyclic carbonate (92%).

키워드

참고문헌

  1. Wong, K.-T., Liao, Y.-L., Peng, Y.-C., Wang, C.-C., Lin, S.-Y., Yang, C.-H., Tseng, S.-M., Lee, G.-H., and Peng, S.-M., "A Novel Right-angled Ligand That Forms Polymeric Metal-Organic Frameworks with Nanometer-sized Square Cavities," Cryst. Growth Des., 5(2), 667-671 (2005). https://doi.org/10.1021/cg049822o
  2. Fournier, J.-H., Maris, T., and Wuest, J. D., "Molecular Tectonics. Porous Hydrogen-bonded Networks Built from Derivatives of 9, 9'-Spirobifluorene," J. Org. Chem., 69(6), 1762-1775 (2004). https://doi.org/10.1021/jo0348118
  3. Fournier, J.-H., Maris, T., and Wuest, J. D., "Molecular Tectonics. Construction of Porous Hydrogen-bonded Networks from Bisketals of Pentaerythritol," J. Org. Chem., 68(2), 240-246 (2003). https://doi.org/10.1021/jo026267t
  4. Smith, D. K., and Diederich, F., "Dendritic Hydrogen Bonding Receptors: Enantiomerically Pure Dendroclefts for the Selective Recognition of Monosaccharides," J. Chem. Soc., Chem. Commun., (22), 2501-2502 (1998).
  5. Lustenberger, P., Martinborough, E., Denti, T. M., and Diederich, F., "Geometrical Optimisation of 1,1′- Binaphthalene Receptors for Enantioselective Molecular Recognition of Excitatory Amino Acid Derivatives," J. Chem. Soc., Perkin Trans., 2, 747-762 (1998).
  6. Smith, D. K., Zingg, A., and Diederich, F., "Dendroclefts. Optically Active Dendritic Receptors for the Selective Recognition and Chiroptical Sensing of Monosaccharide Guests," Helv. Chim. Acta., 82(8), 1225-1241 (1999). https://doi.org/10.1002/(SICI)1522-2675(19990804)82:8<1225::AID-HLCA1225>3.0.CO;2-V
  7. Tejeda, A., Oliva, A. I., Simon, L., Grande, M., Caballero, M.-C., and Moran, J. R., "A Macrocyclic Receptor for the Chiral Recognition of Hydroxy Carboxylates," Tetrahedron Lett., 41(23), 4563-4566 (2000). https://doi.org/10.1016/S0040-4039(00)00693-6
  8. Tour, J. M., Wu, R.-L., and Schumm, J. S., "Approaches to Orthogonally Fused Conducting Polymers for Molecular Electronics," J. Am. Chem. Soc., 112(14), 5662-5663 (1990). https://doi.org/10.1021/ja00170a053
  9. Pei, J., Ni, J., Zhou, X.-H., Cao, X.-Y., and Lai, Y.-H., "Regioregular Head-to-tail Oligothiophene-functionalized 9,9'- Spirobifluorene Derivatives. 2. NMR Characterization, Thermal Behaviors, and Electrochemical Properties," J. Org. Chem., 67(23), 8104-8113 (2002). https://doi.org/10.1021/jo020397k
  10. Yu, W.-L., Pei, J., Huang, W., and Heeger, A. J., "Spiro-functionalized Polyfluorene Derivatives as Blue Light-emitting Materials," Adv. Mater., 12(11), 828-831 (2000). https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<828::AID-ADMA828>3.0.CO;2-H
  11. Zeng, G., Yu, W.-L., Chua, S.-J, and Huang, W., "Spectral and Thermal Spectral Stability Study for Fluorene-based Conjugated Polymers," Macromolecules, 35(18), 6907-6914 (2002). https://doi.org/10.1021/ma020241m
  12. Vak, D., Chun, C., Lee, C.-L., Kim, J.-J., and Kim, D.-Y., "A Novel Spiro-functionalized Polyfluorene Derivative with Solubilizing Side Chains," J. Mater. Chem., 14(8), 1342-1346 (2004). https://doi.org/10.1039/b317028d
  13. Wu, Y., Li, J., Fu, Y., and Bo, Z., "Synthesis of Extremely Stable Blue Light Emitting Poly(spirobifluorene)s with Suzuki Polycondensation," Org. Lett., 6(20), 3485-3487 (2004). https://doi.org/10.1021/ol048709o
  14. Vak, D., Lim, B, Lee, S.-H., and Kim, D.-Y., "Synthesis of a Double Spiro-polyindenofluorene with a Stable Blue Emission," Org. Lett., 7(19), 4229-4232 (2005). https://doi.org/10.1021/ol051661+
  15. Tseng, Y.-H., Shih, P.-I., Chien, C.-H., Dixit, A. K., Shu, C.-F., Liu, Y.-H., and Lee, G.-H., "Stable Organic Blue-light-emitting Devices Prepared from Poly[spiro(fluorene-9,9'-xanthene)," Macromolecules, 38(24), 10055-10060 (2005). https://doi.org/10.1021/ma051798f
  16. Wong, K.-T., Chien, Y.-Y., Chen, R.-T., Wang, C.-F., Lin, Y.-T., Chiang, H.-H., Hsieh, P.-Y., Wu, C.-C., Chou, C. H., Su, Y. O., Lee, G.-H., and Peng, S.-M., "Ter(9,9-diarylfluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability," J. Am. Chem. Soc., 124(39), 11576- 11577 (2002). https://doi.org/10.1021/ja0269587
  17. Xie, L.-H., Liu,F., Tang, C., Hou, X.-Y., Hua, Y.-R., Fan, Q.-L., and Huang, W., "Unexpected One-pot Method to Synthesize Spiro[fluorene-9,9'-xanthene] Building Blocks for Blue-light- Emitting Materials," Org. Lett., 8(13), 2787-2790 (2006). https://doi.org/10.1021/ol060871z
  18. Bischoff, F., and Adkins, H., "The Condensation of Diphenic Anhydride with Resorcinol," J. Am. Chem. Soc., 45(5), 1030-1033 (1923). https://doi.org/10.1021/ja01657a022
  19. Trost, B. M., "The Atom Economy - A Search for Synthetic Efficiency," Science, 254(5037), 1471-1477 (1991). https://doi.org/10.1126/science.1962206
  20. Trost, B. M., "Atom Economy - A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way," Angew. Chem. Int. Ed. Engl., 34(3), 259-281 (1995). https://doi.org/10.1002/anie.199502591
  21. Sheldon, R. A., "Organic Synthesis - Past, Present and Future," Chem. Ind., (23), 903-906 (1992).
  22. Darensbourg, D. J., and Holtcamp, M. W., "Catalysts for the Reactions of Epoxides and Carbon Dioxide", Coord. Chem. Rev., 153, 155-174 (1996). https://doi.org/10.1016/0010-8545(95)01232-X
  23. Shen, Y.-M., Duan, W.-L., and Shi, M., "Chemical Fixation of Carbon Dioxide Catalyzed by Binaphthyldiamino Zn, Cu, and Co Salen-type Complexes," J. Org. Chem., 68(4), 1559-1562 (2003). https://doi.org/10.1021/jo020191j
  24. Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H., and Kaneda, K., "Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides," J. Am. Chem. Soc., 121(18), 4526-4527 (1999). https://doi.org/10.1021/ja9902165
  25. Kim, H. S., Kim, J. J., Lee, B. G., Jung, O. S., Jang, H. G., and Kang, S. O., "Isolation of a Pyridinium Alkoxy Ion Bridged Dimeric Zinc Complex for the Coupling Reactions of $CO_2$ and Epoxides," Angew. Chem. Int. Ed., 39(22), 4096-4098 (2000). https://doi.org/10.1002/1521-3773(20001117)39:22<4096::AID-ANIE4096>3.0.CO;2-9
  26. Darensbourg, D. J., Wildeson, J. R., Yarbrough, J. C., and Reibenspies, J. H., "Bis-2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts: Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides," J. Am. Chem. Soc., 122(50), 12487-12496 (2000). https://doi.org/10.1021/ja002855h
  27. Allen, S. D., Moore, D. R., Lobkovsky, E. B., and Coates, G. W., "High-Activity, Single-Site Catalysts for the Alternating Copolymerization of CO2 and Propylene Oxide," J. Am. Chem. Soc., 124(48), 14284-14285 (2002). https://doi.org/10.1021/ja028071g
  28. Kim, H. S., Kim, J. J., Kwon, H. N., Chung, M. J., Lee, B. G., and Jang, H. G., "Well-defined Highly Active Heterogeneous Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides," J. Catal., 205(1), 226-229 (2002). https://doi.org/10.1006/jcat.2001.3444
  29. Calo, V., Nacci, A., Monopoli, A., and Fanizzi, A., "Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts," Org. Lett. 4(15), 2561-2563 (2002). https://doi.org/10.1021/ol026189w
  30. Huang, J.-W., and Shi, M., "Chemical Fixation of Carbon Dioxide by NaI/$PPh_$/PhOH," J. Org. Chem., 68(17), 6705- 6709 (2003). https://doi.org/10.1021/jo0348221
  31. Kim, H. S., Kim, J. J., Lee, S. D., Lah, M. S., Moon, D., and Jang, H. G., "New Mechanistic Insight into the Coupling Reactions of $CO_2$ and Epoxides in the Presence of Zinc Complexes," Chem. Eur. J., 9(3), 678-686 (2003). https://doi.org/10.1002/chem.200390076
  32. Kawanami, H., Sasaki, A., Matsui, K., and Ikushima, Y., "A Rapid and Effective Synthesis of Propylene Carbonate Using a Supercritical $CO_2$-ionic Liquid System," J. Chem. Soc., Chem. Commun., (7), 896-897 (2003).
  33. Kim, Y.-j., and Cheong, M., "Chemical Fixation of Carbon Dioxide to Propylene Carbonate in Ionic Liquids," Bull. Korean. Chem. Soc., 23(7), 1027-1028 (2002). https://doi.org/10.5012/bkcs.2002.23.7.1027
  34. Shaikh, A. A. G., and Sivaram, S., "Organic Carbonates," Chem. Rev., 96(3), 951-976 (1996). https://doi.org/10.1021/cr950067i
  35. Clements, J. H., "Reactive Applications of Cyclic Alkylene Carbonates," Ind. Eng. Chem. Res., 42(4), 663-674 (2003). https://doi.org/10.1021/ie020678i
  36. Kendall, J. L., Canelas, D. A., Young, J. L., and DeSimone, J. M., "Polymerizations in Supercritical Carbon Dioxide," Chem. Rev., 99(2), 543-563 (1999). https://doi.org/10.1021/cr9700336
  37. Shim, J. J., Kim, D, and Ra, C. S., "Carboxylation of Styrene Oxide Catalyzed by Quaternary Onium Salts under Solvent-free Conditions," Bull. Korean Chem. Soc., 27(5), 744-746 (2006). https://doi.org/10.5012/bkcs.2006.27.5.744
  38. Liu, F., He, J.-W., Lin, Z.-M., Ling, J.-Q., and Jia, D.-M., "Synthesis and Characterization of Dimethacrylate Monomer with High Molecular Weight for Root Canal Filling Materials," Molecules, 11, 953-958 (2006). https://doi.org/10.3390/11120953