DOI QR코드

DOI QR Code

Preparation and Optical Characterization of Photonic Crystal Smart Dust Encoded with Reflection Resonance

반사공명으로 인코딩된 광결정 스마트 먼지의 제조방법 및 광학적 특징

  • Lee, Boyeon (Department of Chemistry, Chosun University) ;
  • Hwang, Minwoo (Department of Chemistry, Chosun University) ;
  • Cho, Hyun (Department of Chemistry, Chosun University) ;
  • Kim, Hee-Cheol (Department of Chemistry, Chosun University) ;
  • Han, Jungmin (Biorefinery Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2010.06.14
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

Photonic crystals containing rugate structures from a single crystalline silicon wafer was obtained by using a sinoidal alternating current during an electrochemical etch procedure. Photonic crystals were isolated from the silicon substrate by applying an electropolishing current and were then made into particles by using an ultrasonic fracture in an ethanol solution to give a smart dust. Smart dusts exhibited their unique nanostructures and optical characteristics. They exhibited sharp photonic band gaps in the optical reflectivity spectrum. The size of smart dust obtained was in the range of 10-20 nm.

Keywords

References

  1. J. R. Link and M. J. Sailor, "Smart dust: Self-assembling, self-orienting photonic crystals of porous Si", Proc. Natl. Acad. Sci., Vol. 100, p. 10607, 2003. https://doi.org/10.1073/pnas.1233824100
  2. A. Janshoff, K.-P. S. Dancil, C. Steinem, D. P. Greiner, V. S.-Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor, and M. R. Ghadiri, "Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing", J. Am. Chem. Soc., Vol. 120, p. 12108, 1998. https://doi.org/10.1021/ja9826237
  3. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, "A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface", J. Am. Chem. Soc., Vol. 121, p. 7925, 1999. https://doi.org/10.1021/ja991421n
  4. D. van Noort, S. Welin-Klinstrom, H. Arwin, S. Zangooie, I. Lundstrom, and C.-F. "Mandnius, Monitoring specific interaction of low molecular weight biomolecules on oxidized porous silicon using ellipsometry", Biosens. Bioelectro., Vol. 13, p. 439, 1998. https://doi.org/10.1016/S0956-5663(97)00094-8
  5. S. Chan, S. R. Horner, B. L. Miller, and P. M. Fauchet, "Identification of gram negative bacteria using nanoscale silicon microcavities", J. Am. Chem. Soc., Vol. 123, p. 11797, 2001. https://doi.org/10.1021/ja016555r
  6. H. Sohn, S. Letant, M. J. Sailor, and W. C. Trogler, "Detection of fluorophosphonate chemical warfare agents by catalytic hydrolysis with a porous silicon interferometer", J. Am. Chem. Soc., Vol. 122, p. 5399, 2000. https://doi.org/10.1021/ja0006200
  7. V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous silicon-based optical interferometric biosensor", Science, Vol. 278, p. 840, 1997. https://doi.org/10.1126/science.278.5339.840
  8. M. Simion, I. Kleps, T. Neghina, A. Angelescu, M. Miu, A. Bragaru, M. Danila, E. Condac, M. Costache, and L.Savu, "Nanoporous silicon matrix used as biomaterial", J. Alloy. Compd., Vol. 434, p. 830, 2007. https://doi.org/10.1016/j.jallcom.2006.08.093
  9. S. Ilyas, T. Bocking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, "Porous silicon based narrow line-width rugate filters", Opt. Mater., Vol. 29, p. 619, 2007. https://doi.org/10.1016/j.optmat.2005.10.012
  10. M. A. Khan, M. S. Haque, H. A. Naseem, W. D. Brown, and A. P. Malshe, "Microwave plasma chemical vapor deposition of diamond films with low residual stress on large area porous silicon substrates", Thin Solid Films, Vol. 332, p. 93, 1998. https://doi.org/10.1016/S0040-6090(98)01209-7
  11. S. E. L'etant, S. Content, T. T. Tan, F. Zenhausern, and M. J. Sailor, "Integration of porous silicon chips in an electronic artificial nose", Sensor Actuat. B-Chem., Vol. 69, p. 193 2000. https://doi.org/10.1016/S0925-4005(00)00539-6
  12. C. Levy-Clement, A. Lagoubi, and M. J. Tomkiewucz, "Theoretical model for early stages of porous silicon formationfrom n-and p-type silicon substrates", Electrochem. Soc., Vol. 278, p. 840, 1997.
  13. J. M. Laucerhaas and M. J. Sailor, "Chemical Modification of the Photoluminescence Quenching of Porous Silicon", Science, Vol. 261, p. 1567, 1993. https://doi.org/10.1126/science.261.5128.1567
  14. M. S. Yoon, K. H. Ahn, R. W. Cheung, H. Sohn, J. R. Link, F. Cunin, and M. J. Sailor "Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization", Chem. Commun., Vol. 680, p. 8246, 2003.
  15. J. Kim, S. Jang, Y. Koh, C. Park, H.-G. Woo, S. Kim, and H. Sohn, "Fabrication of Multi-Optical Filters Based on Encoded Rugate Porous Silicon", J. Nanosci. Nanotechnol., Vol. 8, p. 4951, 2008. https://doi.org/10.1166/jnn.2008.1246
  16. H. Gerischer, P. Allogue, V. Kieling, and B. Bunsenges, "The mechanism of the anodic oxidation of silicon in acidic fluoride solutions revisited", Chem. Phys., vol. 97, p. 753, 1993.
  17. K. S. Dancil, D. P. Greiner, and M. J. Sailor, "Development of a porous silicon based biosensor", J. Am. Chem. Soc., Vol. 121, p. 7925, 1999. https://doi.org/10.1021/ja991421n