References
- Schlapbch, L.; Zuttel, A. Nature 2001, 414, 353. https://doi.org/10.1038/35104634
- Li, Y.; Zhao, D.; Wang, Y.; Xue, R.; Shen, Z.; Li, X. Int. J. Hydrogen Energy 2006, 32, 2513.
- Peles, A.; van de Walle C, G. Phys. Rev. B 2007, 76, 214101. https://doi.org/10.1103/PhysRevB.76.214101
- Shindo, K.; Kondo, T.; Sakurai, Y. J. Alloy Compd. 2004, 372, 201. https://doi.org/10.1016/j.jallcom.2003.08.103
- Mu, S. C.; Tang, H. L.; Qian, S. H.; Pan, M.; Yuan, R. Z. Carbon 2006, 44, 762. https://doi.org/10.1016/j.carbon.2005.09.010
- Endo, M.; Kroto, H. W. J. Phys. Chem. 1992, 96, 6941. https://doi.org/10.1021/j100196a017
- Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1992, 195, 537. https://doi.org/10.1016/0009-2614(92)85559-S
- Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95. https://doi.org/10.1126/science.282.5386.95
- Liu, J.; Rinzler, A. G.; Dai, H.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriquez- Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science 1998, 280, 1253. https://doi.org/10.1126/science.280.5367.1253
- Zhong, Z. Y.; Xiong, Z. T.; Sun, L. F.; Luo, J. Z.; Chen, P.; Wu, X.; Lin, H.; Tan, K. L. J. Phys. Chem. B 2002, 106, 9507. https://doi.org/10.1021/jp020151j
- Zhang, J.; Zou, H.; Qing, Q.; Yang, Y.; Li, Q.; Liu, Z.; Guo, X.; Du, Z. J. Phys. Chem. B 2003, 107, 3712. https://doi.org/10.1021/jp027500u
- Kim, Y. T.; Mitani, T. J. Power Sources 2006, 158, 1517. https://doi.org/10.1016/j.jpowsour.2005.10.069
- Shen, J.; Huang, W.; Wu, L.; Hu, Y.; Ye, M. Mater. Sci. Eng. A 2007, 464, 151. https://doi.org/10.1016/j.msea.2007.02.091
- Kim, B. J.; Park, S. J. J. Colloid Interface Sci. 2007, 311, 619. https://doi.org/10.1016/j.jcis.2007.03.049
- Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F. J. Phys. Chem. B 2002, 106, 8971. https://doi.org/10.1021/jp020680n
- Yu, H.; Jin, Y.; Peng, F.; Wang, H.; Yang, J. J. Phys. Chem. C 2008, 112, 6758. https://doi.org/10.1021/jp711975a
- Meng, H.; Sui, G. X.; Fang, P. F.; Yang, R. Polymer 2008, 49, 610. https://doi.org/10.1016/j.polymer.2007.12.001
- Yue, Z. R.; Wang, W. J.; Gardner, S. D.; Pittman, C. U. Carbon 1999, 37, 1785. https://doi.org/10.1016/S0008-6223(99)00047-0
- Xu, R.; Wu, C.; Xu, H. Carbon 2007, 45, 2806. https://doi.org/10.1016/j.carbon.2007.09.010
- Cuervo, M. R.; Esther, A. N.; Eva, D.; Ordonez, S.; Vega, A.; Ana, B. D.; Inmaculada, R. R. Carbon 2008, 46, 2096. https://doi.org/10.1016/j.carbon.2008.08.025
- Shen, J. F.; Hu, Y. Z.; Qin, C.; Ye, M. X. Langmuir 2008, 24, 3993. https://doi.org/10.1021/la703957t
- Liu, H.; Wang, X.; Fang, P.; Wang, S.; Qi, X.; Pan, C.; Xie, G.; Liew, K. M. Carbon 2010, 48, 721. https://doi.org/10.1016/j.carbon.2009.10.018
- Zhao, N.; He, C.; Li, J.; Jiang, Z.; Li, Y. Mater. Res. Bull. 2006, 41, 2204. https://doi.org/10.1016/j.materresbull.2006.04.029
- Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L.; Bergmann, C. P. Appl. Surf. Sci. 2008, 255, 2485. https://doi.org/10.1016/j.apsusc.2008.07.144
- Li, M.; Boggs, M.; Beebe, T. P.; Huang, C. P. Carbon 2008, 46, 466. https://doi.org/10.1016/j.carbon.2007.12.012
- Leddy, L. M.; Ramaprabhu, S. Int. J. Hydrogen Energy 2007, 32, 3998. https://doi.org/10.1016/j.ijhydene.2007.04.048
Cited by
- Effect of Surfactant on Rheological and Electrical Properties of Latex-Blended Polystyrene/Single-Walled Carbon Nanotube Nanocomposites vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.364
- A DFT study on electronic structure and local reactivity descriptors of pristine and carbon-substituted AlN nanotubes vol.91, pp.8, 2013, https://doi.org/10.1139/cjc-2013-0103
- Fabrication of flexible conducting thin films of copper-MWCNT from multi-component aqueous suspension by electrodeposition vol.18, pp.2, 2014, https://doi.org/10.1007/s10008-013-2279-9
- Effect of dispersion condition of multi-walled carbon nanotube (MWNT) on bonding properties of solderable isotropic conductive adhesives (ICAs) vol.25, pp.12, 2014, https://doi.org/10.1007/s10854-014-2290-7
- Electrical and mechanical properties of multiwalled carbon nanotubes-reinforced solderable polymer nanocomposites vol.26, pp.3, 2015, https://doi.org/10.1007/s10854-014-2592-9
- A review: role of interfacial adhesion between carbon blacks and elastomeric materials vol.18, 2016, https://doi.org/10.5714/CL.2016.18.001
- Multinanosensors Based on MWCNTs and Biopolymer Matrix - Production and Characterization vol.132, pp.4, 2017, https://doi.org/10.12693/APhysPolA.132.1251
- Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation vol.2017, pp.2314-4874, 2017, https://doi.org/10.1155/2017/4387391
- Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT) - epoxy adhesive for thermal conductivity applications vol.28, pp.12, 2017, https://doi.org/10.1007/s10854-017-6621-3
- 라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향 vol.34, pp.6, 2010, https://doi.org/10.7317/pk.2010.34.6.534
- Effect of platinum doping of activated carbon on hydrogen storage behaviors of metal-organic frameworks-5 vol.36, pp.14, 2010, https://doi.org/10.1016/j.ijhydene.2011.03.038
- Modelling and optimization ofCandida rugosananobioconjugates catalysed synthesis of methyl oleate by response surface methodology vol.29, pp.6, 2010, https://doi.org/10.1080/13102818.2015.1078744
- UV-irradiated carbon nanotubes synthesized from fly ash for adsorption of congo red dyes in aqueous solution vol.57, pp.45, 2016, https://doi.org/10.1080/19443994.2015.1123192