DOI QR코드

DOI QR Code

Fabrication and Characterization of High-activity Pt/C Electrocatalysts for Oxygen Reduction

  • Lim, Bo-Rami (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Joung-Woon (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Hwang, Seung-Jun (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Yoo, Sung-Jong (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Cho, Eun-Ae (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Lim, Tae-Hoon (Fuel Cell Center, Korea Institute of Science and Technology) ;
  • Kim, Soo-Kil (Fuel Cell Center, Korea Institute of Science and Technology)
  • Received : 2010.01.11
  • Accepted : 2010.04.15
  • Published : 2010.06.20

Abstract

A 20 wt % Pt/C is fabricated and characterized for use as the cathode catalyst in a polymer electrolyte membrane fuel cell (PEMFC). By using the polyol method, the fabrication process is optimized by modifying the carbon addition sequence and precursor mixing conditions. The crystallographic structure, particle size, dispersion, and activity toward oxygen reduction of the as-prepared catalysts are compared with those of commercial Pt/C catalysts. The most effective catalyst is obtained by ultrasonic treatment of ethylene glycol-carbon mixture and immediate mixing of this mixture with a Pt precursor at the beginning of the synthesis. The catalyst exhibits very uniform particle size distribution without agglomeration. The mass activities of the as-prepared catalyst are 13.4 mA/$mg_{Pt}$ and 51.0 mA/$mg_{Pt}$ at 0.9 V and 0.85 V, respectively, which are about 1.7 times higher than those of commercial catalysts.

Keywords

References

  1. Yang, H.; Alonso-Vante N.; Léger, J.-M.; Lamy, C. J. Phys. Chem. B 2004, 108, 1938. https://doi.org/10.1021/jp030948q
  2. Antolini, E.; Salgado, J. R. C.; da Silva, R. M.; Gonzalez, E. R. Mater. Chem. Phys. 2007, 101, 395. https://doi.org/10.1016/j.matchemphys.2006.07.004
  3. Santiago, E. I.; Varanda, L. C.; Villullas, H. M. J. Phys. Chem. C 2007, 111, 3146. https://doi.org/10.1021/jp0670081
  4. Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. J. Chem. Phys. 2004,120, 10240. https://doi.org/10.1063/1.1737365
  5. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Nature Chem. 2009, 1, 552. https://doi.org/10.1038/nchem.367
  6. Zhai, J.; Huang, M.; Dong, S. Electroanalysis 2007, 19, 506. https://doi.org/10.1002/elan.200603728
  7. Wei, Z. D.; Feng, Y. C.; Li, L.; Liao, M. J.; Fu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. J. Power Sources 2008, 180, 84. https://doi.org/10.1016/j.jpowsour.2008.01.086
  8. Koh, S.; Strasser, P. J. Am. Chem. Soc. 2007, 129, 12624. https://doi.org/10.1021/ja0742784
  9. Wang, J. X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R. R. J. Am. Chem. Soc. 2009, 131, 17298. https://doi.org/10.1021/ja9067645
  10. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. J. Am. Chem. Soc. 2007, 129, 6974. https://doi.org/10.1021/ja070440r
  11. Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. Int. Ed. 2007, 46, 4060. https://doi.org/10.1002/anie.200700894
  12. Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Science 2009, 324, 1302. https://doi.org/10.1126/science.1170377
  13. Liu, S.-J.; Huang, C.-H.; Huang, C.-K.; Hwang, W.-S. Electrochem. Commun. 2009, 11, 1792. https://doi.org/10.1016/j.elecom.2009.07.020
  14. Wang, Z.-B.; Zuo, P.-J.; Chu, Y.-Y.; Shao, Y.-Y.; Yin, G.-P. Int. J. Hydrogen Energy 2009, 34, 4387. https://doi.org/10.1016/j.ijhydene.2009.03.045
  15. Nores-Pondal, F. J.; Viella, I. M. J.; Troiani, H.; Granada, M.; de Miguel, S. R.; Scelza, O. A.; Corti, H. R. Int. J. Hydrogen Energy 2009, 34, 8193. https://doi.org/10.1016/j.ijhydene.2009.07.073
  16. Martin, A. J.; Chaparro, A. M.; Gallardo, B.; Folgado, M. A.; Daza, L. J. Power Sources 2009, 192, 14. https://doi.org/10.1016/j.jpowsour.2008.10.104
  17. Khan, M. R.; Lin, S. D. J. Power Sources 2006, 162, 186. https://doi.org/10.1016/j.jpowsour.2006.07.065
  18. Oh, H.-S.; Oh, J.-G.; Kim, H. J. Power Sources 2008, 183, 600. https://doi.org/10.1016/j.jpowsour.2008.05.070
  19. Zeng, J.; Lee, J. Y.; Zhou, W. Appl. Catal. A:Gen. 2006, 308, 99. https://doi.org/10.1016/j.apcata.2006.04.019
  20. Pozio, A.; Francesco, M. De.; Cemmi, A.; Cardellini, F.; Giorgi L., J. Power Sources 2002, 105, 13. https://doi.org/10.1016/S0378-7753(01)00921-1
  21. Shih, Y.-H.; Sagar, G. V.; Lin, S. D. J. Phys. Chem. C 2008, 112, 123. https://doi.org/10.1021/jp071807h
  22. Yu X.; Ye, S. J. Power Sources 2007, 172, 133. https://doi.org/10.1016/j.jpowsour.2007.07.049
  23. Zhang, S.; Yuan, X.-Z.; Hin, J. N. C.; Wang, H.; Friedrich, K. A.; Schulze, M. J. Power Sources 2009, 194, 588. https://doi.org/10.1016/j.jpowsour.2009.06.073
  24. Okhlopkova, L.; Lisitsyn, A.; Likholobov, V.; Gurrath, M.; Boehm, H. Appl. Catal. A: Gen. 2000, 204, 229. https://doi.org/10.1016/S0926-860X(00)00534-2
  25. Pai, Y.; Ke, J.; Chou, C.; Lin, J.; Zen, J.; Shieu, F. J. Power Sources 2006, 163, 398. https://doi.org/10.1016/j.jpowsour.2006.09.031
  26. Liu, Z. L.; Liu, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234. https://doi.org/10.1021/jp049422b
  27. Zhou, Z. H.; Wang, S. L.; Zhou, W. J.; Wang, G. X.; Jiang, L. H.; Li, W. Z.; Song, S. Q.; Liu, J. G.; Sun, G. Q.; Xin, Q. Langmuir 2003, 3, 394.
  28. Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395. https://doi.org/10.1016/0022-0728(87)85156-2
  29. Zhou, Z.; Wang, S.; Zhou, W.; Wang, G.; Jiang, L.; Li, W.; Song, S.; Liu, J.; Sun, G.; Xin, Q. Chem. Commun. 2003, 3, 394.
  30. Jiang, L.; Sun, G.; Zhou, Z.; Sun, S.; Wang, Q.; Yan, S.; Li, H.; Tian, J.; Guo, J.; Zhou, B.; Xin, Q. J. Phys. Chem. B 2005, 109, 8774. https://doi.org/10.1021/jp050334g
  31. Li, W.; Zhou, W.; Li, H.; Zhou, Z.; Zhou, B.; Sun, G.; Xin, Q. Electrochim. Acta 2004, 49, 1045. https://doi.org/10.1016/j.electacta.2003.10.015
  32. Moffat, T. P.; Mallett, J. J.; Hwang, S.-M. J. Electrochem. Soc. 2009, 156, B238.

Cited by

  1. Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts vol.28, pp.1, 2013, https://doi.org/10.1002/aoc.3048
  2. Membrane Electrode Assembly with Ultra Low Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition vol.15, pp.2, 2015, https://doi.org/10.1002/fuce.201400062
  3. Electrochemical comparison of two sulfonated styrene PEM membranes synthesized by different methods vol.45, pp.11, 2015, https://doi.org/10.1007/s10800-015-0877-1
  4. Facile Strategy for Mass Production of Pt Catalysts for Polymer Electrolyte Membrane Fuel Cells Using Low-Energy Electron Beam vol.10, pp.11, 2010, https://doi.org/10.3390/nano10112216