참고문헌
- W. Jueptner and U. Schnars, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin Heidelberg, Germany, 2005).
- M. K. Kim, L. F. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three Dimensional Display: Principles and Applications, T. C. Poon, ed. (Springer, USA, 2006), pp. 51-72.
- D. Gabor, “A new microscope principle,” Nature 161, 777-778 (1948). https://doi.org/10.1038/161777a0
- D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454-487 (1949).
- E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963). https://doi.org/10.1364/JOSA.53.001377
- C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153, 989-990 (1966). https://doi.org/10.1126/science.153.3739.989
- S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” Journal of the Acoustical Society of America 51, 1904-1920 (1972). https://doi.org/10.1121/1.1913050
- J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). https://doi.org/10.1063/1.1755043
- U. Schnars and W. Juptner, “Direct recording of holograms by a Ccd target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). https://doi.org/10.1364/AO.33.000179
- S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Exp. 9, 294-302 (2001). https://doi.org/10.1364/OE.9.000294
- C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 10 (2006). https://doi.org/10.1186/1475-925X-5-10
- E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999). https://doi.org/10.1364/OL.24.000291
- J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008). https://doi.org/10.1088/0957-0233/19/7/074007
- P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003). https://doi.org/10.1364/AO.42.001938
- J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2 pi ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003). https://doi.org/10.1364/OL.28.001141
- I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). https://doi.org/10.1364/OL.22.001268
- F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004). https://doi.org/10.1364/AO.43.001131
- F. Dubois, L. Joannes, and J. C. Legros, “Improved threedimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999). https://doi.org/10.1364/AO.38.007085
- T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am. A 2, 521-527 (1985). https://doi.org/10.1364/JOSAA.2.000521
- T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt. 48, H153-H159 (2009). https://doi.org/10.1364/AO.48.00H153
- T. Kim and T. C. Poon, “Experiments of depth detection and image recovery of a remote target using a complex hologram,” Opt. Eng. 43, 1851-1855 (2004). https://doi.org/10.1117/1.1764574
- T. C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406-415 (2009). https://doi.org/10.3807/JOSK.2009.13.4.406
- C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “Highresolution quantitative phase-contrast microscopy by digital holography,” Opt. Exp. 13, 8693-8698 (2005). https://doi.org/10.1364/OPEX.13.008693
- T. Colomb, J. Kuhn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4306 (2006). https://doi.org/10.1364/OE.14.004300
- M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008). https://doi.org/10.1088/0957-0233/19/7/074009
- B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228-232(2009). https://doi.org/10.1016/j.bcmd.2009.01.018
- B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006). https://doi.org/10.1117/1.2204609
- A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello, A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting nanotechnologies and TRPV1 channels to investigate theputative anandamide membrane transporter,” PLoS One 5, e10239 (2010). https://doi.org/10.1371/journal.pone.0010239
- K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motilitycontrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Exp. 15, 14057-14064 (2007). https://doi.org/10.1364/OE.15.014057
- L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Exp. 17, 12031-12038 (2009). https://doi.org/10.1364/OE.17.012031
- C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305-5314 (2008). https://doi.org/10.1364/AO.47.005305
- W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001). https://doi.org/10.1073/pnas.191361398
- J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006). https://doi.org/10.1364/AO.45.003893
- R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187-2197 (2000). https://doi.org/10.1117/1.1305542
- J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). https://doi.org/10.1364/AO.45.000836
- E. Malkiel, I. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657-3666 (2003). https://doi.org/10.1242/jeb.00586
- S. Schedin, G. Pedrini, and H. J. Tizian, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853-2857 (2000). https://doi.org/10.1364/AO.39.002853
- I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008). https://doi.org/10.1109/TMI.2008.927339
- D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858 (1966). https://doi.org/10.1364/JOSA.56.000849
- I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001). https://doi.org/10.1364/AO.40.006177
- A. Stern and B. Javidi, “Space-bandwith conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736-741 (2008). https://doi.org/10.1364/JOSAA.25.000736
- L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Exp. 13, 2444-2452 (2005). https://doi.org/10.1364/OPEX.13.002444
- B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917-927 (2005). https://doi.org/10.1364/JOSAA.22.000917
- T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002). https://doi.org/10.1117/1.1458551
- L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929-5935 (2000). https://doi.org/10.1364/AO.39.005929
- C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999). https://doi.org/10.1364/AO.38.004812
- J. W. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw Hill, Boston, USA, 1996).
- J. C. Li, P. Tankam, Z. J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572-574 (2009). https://doi.org/10.1364/OL.34.000572
- D. Y. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47, D12-D20 (2008). https://doi.org/10.1364/AO.47.000D12
- L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005). https://doi.org/10.1364/OL.30.002092
- S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071 (2008). https://doi.org/10.1364/AO.47.003064
- E. Wolf, “Determination of amplitude and phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18-20(1970). https://doi.org/10.1364/JOSA.60.000018
- L. Onural, “Diffraction from a wavelet point-of-view,” Opt. Lett. 18, 846-848 (1993). https://doi.org/10.1364/OL.18.000846
- M. Brunel, S. Coetmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform,” Appl. Opt. 48, 579-583 (2009). https://doi.org/10.1364/AO.48.000579
- Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47, 552-557 (2009). https://doi.org/10.1016/j.optlaseng.2008.10.002
- S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Exp. 15, 13640-13648 (2007). https://doi.org/10.1364/OE.15.013640
- N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in offaxis digital holography through nonlinear filtering,” Appl. Opt. 48, H186-H195 (2009). https://doi.org/10.1364/AO.48.00H186
- H. Cho, J. K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Optics and Laser Technology 41, 741-745 (2009). https://doi.org/10.1016/j.optlastec.2009.01.001
- E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). https://doi.org/10.1364/AO.39.004070
- L. F. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Exp. 13, 5621-5627 (2005). https://doi.org/10.1364/OPEX.13.005621
- L. F. Yu and M. K. Kim, “Variable tomographic scanning with wavelength scanning digital interference holography,” Opt. Comm. 260, 462-468 (2006). https://doi.org/10.1016/j.optcom.2005.11.022
- Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817-824 (2008). https://doi.org/10.1364/AO.47.000817
- F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Exp. 14, 5895-5908 (2006). https://doi.org/10.1364/OE.14.005895
- L. F. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897-899 (2006). https://doi.org/10.1364/OL.31.000897
- L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90,041104 (2007). https://doi.org/10.1063/1.2432287
- S. Shin and Y. Yu, “Three-dimensional information and refractive index measurement using a dual-wavelength digital holographic microscope,” J. Opt. Soc. Korea 13, 173-177 (2009). https://doi.org/10.3807/JOSK.2009.13.2.173
- N. Warnasooriya and M. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56, 67-74 (2009). https://doi.org/10.1080/09500340802450615
- N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Exp. 15, 9239-9247 (2007). https://doi.org/10.1364/OE.15.009239
- C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-inone multifunctional optical microscope with a single holographic measurement,” Opt. Eng. 47, 087001 (2008). https://doi.org/10.1117/1.2968708
- A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203-3210 (2008). https://doi.org/10.1364/AO.47.003203
- W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144-H152 (2009). https://doi.org/10.1364/AO.48.00H144
- D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
- M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Exp. 7, 305-310 (2000). https://doi.org/10.1364/OE.7.000305
- J. W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Exp. 16, 21022-21031 (2008). https://doi.org/10.1364/OE.16.021022
- J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653-655(2009). https://doi.org/10.1364/OL.34.000653
- Y. Jeon and C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009). https://doi.org/10.1117/1.3242833
- S. J. Jeong and C. K. Hong, “Illumination-angle-scanning digital interference holography for optical section imaging,” Opt. Lett. 33, 2392-2394 (2008). https://doi.org/10.1364/OL.33.002392
- W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008). https://doi.org/10.1364/OL.33.000171
- T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006). https://doi.org/10.1364/AO.45.000872
- G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000). https://doi.org/10.1364/OL.25.000212
- M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19, 074010 (2008). https://doi.org/10.1088/0957-0233/19/7/074010
- M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9-H15 (2009). https://doi.org/10.1364/AO.48.0000H9
- A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987). https://doi.org/10.1126/science.3547653
- A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970). https://doi.org/10.1103/PhysRevLett.24.156
- S. C. Kuo, “Using optics to measure biological forces and mechanics,” Traffic 2, 757-763 (2001). https://doi.org/10.1034/j.1600-0854.2001.21103.x
- M. W. Berns, “Laser scissors and tweezers,” Scientific American 278, 62-67 (1998).
- E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments 69, 1974-1977 (1998). https://doi.org/10.1063/1.1148883
- D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Exp. 16, 10507-10517 (2008). https://doi.org/10.1364/OE.16.010507
- D. C. Clark, L. Krzewina, and M. K. Kim, “Quantitative analysis by digital holography of the effect of optical pressure on a biological cell,” in Proc. OSA DH Topical Meeting (Miami, FL, USA, 2010), paper JMA23.
- M. C. Potcoava, L. Krzewina, and M. K. Kim, “Threedimensional tracking of optically trapped particles by digital Gabor holography,” in Proc. OSA DH (Miami, FL, USA, 2010), paper JMA35.
피인용 문헌
- Phase Uncertainty in Digital Holographic Microscopy Measurements in the Presence of Solution Flow Conditions vol.122, 2017, https://doi.org/10.6028/jres.122.022
- Characterization of the reference wave in a compact digital holographic camera vol.57, pp.1, 2018, https://doi.org/10.1364/AO.57.00A235
- Visible green upconversion luminescence of Li+/Er3+/Yb3+co-doped CaWO4phosphor and effects of Yb3+concentration vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.142
- Phase aberration compensation by spectrum centering in digital holographic microscopy vol.284, pp.18, 2011, https://doi.org/10.1016/j.optcom.2011.05.013
- Applications of digital holography to measurements and optical characterization vol.50, pp.9, 2011, https://doi.org/10.1117/1.3596204
- Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography vol.17, pp.3, 2012, https://doi.org/10.1117/1.JBO.17.3.036010
- Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology vol.106, pp.3, 2012, https://doi.org/10.1007/s00340-011-4782-y
- Self-interference digital holography with a geometric-phase hologram lens vol.42, pp.19, 2017, https://doi.org/10.1364/OL.42.003940
- Recent advances in holographic 3D particle tracking vol.7, pp.4, 2015, https://doi.org/10.1364/AOP.7.000713
- Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio vol.56, pp.13, 2017, https://doi.org/10.1364/AO.56.000F91
- Improvement of the Quality of Reconstructed Holographic Images by Extrapolation of Digital Holograms vol.58, pp.10, 2016, https://doi.org/10.1007/s11182-016-0663-5
- 3D displacement measurements of the tympanic membrane with digital holographic interferometry vol.20, pp.5, 2012, https://doi.org/10.1364/OE.20.005613
- Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy vol.55, pp.3, 2016, https://doi.org/10.1364/AO.55.000A54
- High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.691
- In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy pp.1864063X, 2018, https://doi.org/10.1002/jbio.201800099
- Achromatic phase shifting self-interference incoherent digital holography using linear polarizer and geometric phase lens vol.26, pp.13, 2018, https://doi.org/10.1364/OE.26.016212