Renewable and Sustainable Resource Derived Carbon Neutral Adhesive Materials

재생 및 지속사용 가능 자원 유래 탄소 중립형 접착소재

  • Kim, Baekjin (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Sangyong (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Cho, Jin Ku (Green Chemistry & Manufacturing System Division, Green Process R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Sang-Hyeup (Department of Life Chemistry, Catholic University of Daegu) ;
  • Kim, Hyun-Joong (Lab. of Adhesion & Bio-Composites, Program in Environmental Materials, Research Team for Biomass-based Bio-Materials, Research Institute and for Agriculture and Life Sciences, Seoul National University)
  • 김백진 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 김상용 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 조진구 (한국생산기술연구원 청정생산시스템연구본부 그린공정연구부) ;
  • 이상협 (대구가톨릭대학교 자연대학 생명화학과) ;
  • 김현중 (서울대학교 농업생명과학대학 산림과학부 환경재료과학전공 바이오복합재료 및 접착과학 연구실, 바이오매스 기반 바이오소재 연구팀)
  • Received : 2010.02.05
  • Published : 2010.06.30

Abstract

The extensive use of fossil resources over the past century resulted in dwindling supply and surging price of oil and it is strongly suspected that irreversible global climate change might be due to carbon dioxide emitted from combustion of fossil carbons. With this regard, much attention is recently paid to renewable and sustainable resources as alternatives to petroleum. In this review, we considered a range of efforts to replace petroleum-derived chemicals, particularly adhesive materials with renewable and sustainable plant-based biomass feedstock.

지난 세기 동안 무분별한 화석자원의 남용과 중국 등 개발도상국에서의 수요급증은 불안정한 유가문제를 야기하였고, 막대한 양의 비가역적 이산화탄소 배출은 지구온난화 문제를 발생시켰다. 이러한 문제를 해결하기 위하여 석유자원을 대체할 수 있는 재생 및 지속사용 가능 자원에 대한 관심이 커지고 있다. 본 논문에서는 재생 및 지속사용 가능 자원으로서 식물성 바이오매스 공급원을 활용하여 석유화학제품 대체하고자 하는 연구개발 동향을 접착소재의 관점에서 고찰하였다.

Keywords

References

  1. J. Leggett, Half gone: oil, gas, hot air and the global energy crisis, Portobello Books, London (2005).
  2. D. Meadows, The limits to growth: the 30-year update, Chelsea Green (2004).
  3. H. Roper, Starch-Starke, 54, 89 (2002). https://doi.org/10.1002/1521-379X(200204)54:3/4<89::AID-STAR89>3.0.CO;2-I
  4. F. W. Lichtenthaler, Acc. Chem. Res., 35, 728 (2002). https://doi.org/10.1021/ar010071i
  5. F. W. Lichtenthaler and S. Peters, R. Chim., 7, 65 (2004). https://doi.org/10.1016/j.crci.2004.02.002
  6. B. Kamm and M. Kamm, Appl. Microbiol. Biotechnol., 64, 137 (2004). https://doi.org/10.1007/s00253-003-1537-7
  7. J. H. Clark, J. Chem. Technol. Biotechnol., 82, 603 (2007). https://doi.org/10.1002/jctb.1710
  8. G. Braunegg, R. Bona, and M. Koller, Polym. Plast. Technol. Eng., 43, 1779 (2004). https://doi.org/10.1081/PPT-200040130
  9. A. Gandini and M. N. Belgacem, J. Polym. Environ., 10, 105 (2002). https://doi.org/10.1023/A:1021172130748
  10. J. V. Kurian, J. Polym. Environ., 13, 159 (2005). https://doi.org/10.1007/s10924-005-2947-7
  11. J. V. Kurian and Y. Liang, U. S. Patent 6,281,325 (2001).
  12. D. E. Packham, Int. J. Adhes. Adhes., 29, 248 (2009). https://doi.org/10.1016/j.ijadhadh.2008.06.002
  13. U. Biermann, W. Friedt, S. Lang, W. Luhs, G. Machmuller, J. O. Metzger, M. R. Klaas, H. J. Schafer, and M. P. Schneider, Angew. Chem. Int. Ed., 39, 2206 (2000). https://doi.org/10.1002/1521-3773(20000703)39:13<2206::AID-ANIE2206>3.0.CO;2-P
  14. F. D. Gunstone, The Chemistry of Oils and Fats, CRC Press LLC: Boca Raton, FL, (2004).
  15. E. Geiger, N. M. Becker, and L. A. Armbruster, W. O. 2006/094227 (2006).
  16. B. Gruber, U. S. Patent 5,026,881 (1991).
  17. S. Sinadinovic-Fiser, M. Jankovic, and Z. S. Petrovic, J. Am. Oil Chem. Soc., 78, 725 (2001). https://doi.org/10.1007/s11746-001-0333-9
  18. T. Vlcek and Z. S. Petrovic, J. Am. Oil Chem. Soc., 83, 247 (2006). https://doi.org/10.1007/s11746-006-1200-4
  19. Z. Petrovic, A. Guo, and I. Javni, U. S. Patent 6,107,433 (2000).
  20. Z. Petrovic, I. Javni, A. Guo, and W. Zhang, U. S. Patent 6,433,121 (2002).
  21. A. Guo, Y.-J. Cho, and Z. S. Petrovic, J. Polym. Sci. Part A: Polym. Chem., 38, 3900 (2000). https://doi.org/10.1002/1099-0518(20001101)38:21<3900::AID-POLA70>3.0.CO;2-E
  22. A. Guo, D. Demydov, W. Zhang, and Z. S. Petrovic, J. Polym. Environ., 10, 49 (2002). https://doi.org/10.1023/A:1021022123733
  23. P. Kandanarachchi, A. Guo, D. Demydov, and Z. S. Petrovic, J. Am. Oil Chem. Soc., 79, 1221 (2002). https://doi.org/10.1007/s11746-002-0631-2
  24. Z. S. Petrovic, W. Zhang, and I. Javni, Biomacromolecules, 6, 713 (2005). https://doi.org/10.1021/bm049451s
  25. J. E. Trout and R. G. Schafermeyer, U. S. Patent 6,504,003 (1999).
  26. Z. S. Petrovic, A. Guo, and W. Zhang, J. Polym. Sci. Part A: Polym. Chem.., 38, 4062 (2000). https://doi.org/10.1002/1099-0518(20001115)38:22<4062::AID-POLA60>3.0.CO;2-L
  27. R. Gokarn, M. A. Eitemann, and J. Sridhar, ACS Symp. Ser., 666, 224 (1997).
  28. K. L. Wasewar, A. A. Yawalkar, J. A. Moulijn, and V. G. Pangarkar, Ind. Eng. Chem. Res., 43, 5969 (2004). https://doi.org/10.1021/ie049963n
  29. H. Kautola, Appl. Microbiol. Biotechnol., 33, 7 (1990).
  30. C. S. K. Reddy and R. P. Singh, Bioresour. Technol., 85, 69 (2002). https://doi.org/10.1016/S0960-8524(02)00075-5
  31. T. Willke and K. D. Vorlop, Appl. Microbiol. Biotechnol., 56, 289 (2001). https://doi.org/10.1007/s002530100685
  32. Y. Hara, H. Izui, and H. Ito, U. S. Patent 2005/0196846 (2005).
  33. M. Sato and N. Akiyoshi, EP Patent 1,233,070 (2002).
  34. H. Ueda, T. Koda, and M. Sato, EP Patent 1,233,069 (2002).
  35. A. Gandini and M. N. Belgacem, Prog. Polym. Sci., 22, 1203 (1997). https://doi.org/10.1016/S0079-6700(97)00004-X
  36. M. N. Belgacem and A. Gandini, Handbook of Adhesive Technology, Marcel Dekker, New York, NY (2003).
  37. Y. Roman-Leshkov, J. N. Chheda, and J. A. Dumesic, Science, 312, 1933 (2006). https://doi.org/10.1126/science.1126337
  38. H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, Science, 316, 1597 (2007). https://doi.org/10.1126/science.1141199
  39. J. B. Binder and R. T. Raines, J. Am. Chem. Soc., 131, 1979 (2009). https://doi.org/10.1021/ja808537j
  40. S. Lima, P. Neves, M. M. Antnes, M. Pillinger, N. Ignatyev, and A. A. Valente, Appl. Catal, A, 363, 93 (2009). https://doi.org/10.1016/j.apcata.2009.04.049
  41. J. K. Jerry II, A. W. Kawczak, H. P. Benecke, K. P. Mitchell, and M. C. Clingerman, U. S. Patent, 2008/0081883 (2008).
  42. D. Parke, D. A. D'argenio, and L. N. Ornston, J. Bacteriol., 182, 257 (2000). https://doi.org/10.1128/JB.182.2.257-263.2000
  43. E. Masai, Y. Katayama, S. Nishikawa, and M. Fukuda, J. Ind. Micobiol. Biotech., 23, 364 (1999). https://doi.org/10.1038/sj.jim.2900747
  44. E. Masai, Y. Katayama, S. Kawai, S. Nishikawa, M. Yamasaki, and N. Morohoshi, J. Bacteriol., 173, 7950 (1991). https://doi.org/10.1128/jb.173.24.7950-7955.1991
  45. E. Masai, Y. Katayama, S. Kubota, S. Kawai, M. Yamasaki, and N. Moroohoshi, FEBS Lett., 323, 135 (1993). https://doi.org/10.1016/0014-5793(93)81465-C
  46. X. Peng, T. Egashira, K. Hanashiro, E. Masai, S. Nishikawa, Y. Katayama, K. Kimura, and M. Fukuda, Appl. Environ. Microbiol., 64, 2520 (1998).
  47. X. Peng, E. Masai, Y. Katayama, and M. Fukuda, Appl. Environ. Microbiol., 65, 2789 (1999).