Characterization and Application of Solvent Based Polyurethane Adhesive with Acrylic Modified Hydrocarbon Resin

Acrylic Modified Hydrocarbon Resin을 함유하고 있는 용제형 폴리우레탄 접착제의 특성 및 응용 연구

  • Received : 2010.03.05
  • Accepted : 2010.03.19
  • Published : 2010.03.30

Abstract

In this study, solvent based polyurethane (PU) adhesives were prepared with the hydrocarbon resin and the acrylic modified hydrocarbon resin contents. The solvent based PU adhesive were increased with increasing tackifier concentration. The surface state of films showed good compatibility with increasing the PX-95 concentration but A-1100 series didn't present homogeneous phase more than 10 phr. Mechanical strength and peel strength were maximum at 5 phr tackifier concentration especially PX-95 series in solvent based PU adhesive.

본 연구에서는 hydrocarbon resin과 acrylic modified hydrocarbon resin의 조성비에 따른 용제형 폴리우레탄 접착제를 제조하여 접착제의 열적 기계적 성질, 상용성 및 접착물성을 알아보았다. 폴리우레탄에 tackifier resin을 첨가함에 따라 $T_g$가 상승하였고, 인장강도는 tackifier를 5 phr를 첨가하였을 때 최고의 값을 나타내고 그 이후로는 감소하는 것을 볼 수 있었으며, 필름 표면은 PX-95를 첨가했을 때 균일하였지만 A-1100을 첨가했을 때는 10 phr 이상부터는 불균일한 것을 확인할 수 있었다. 접착강도는 PX-95를 사용한 것이 A-1100을 사용한 것보다 높게 나타났으며 결론적으로, tackifier 함량을 5 phr 첨가한 것의 접착 강도가 가장 우수한 결과를 나타내었다.

Keywords

References

  1. C. Hepburn, Polyurethane Elastomers, Elsevier, London (1991).
  2. Y. K. Yang, N. S. Kwak, and T. S. Hwang, Polymer (Korea), 1, 81 (2005).
  3. G. Vertel, Polyurethane 2nd, Hanser Pub, New York (1994).
  4. G. Oertel, Polyurethane Handbook, Haser, Cincinnati (1994).
  5. K. H. Chung, K. A. Han, and W. S. Cho, J. Korean Ind. Eng. Chem., 16, 6(2005).
  6. H. S. Joo, D. H. Lim, Y. J. Park, and H. J. Ki, J. Adhesion and Interface, 6, 19 (2005).
  7. B. K. Kim, D. S. Lee, C. H. Do, and H. M. Jeong, Polyurethanes, 1, 329 (2006).
  8. S. M. Kim, N. S. Kwak, Y. K. Yang, and B. K. Yim, Polymer (Korea), 3, 253 (2005).
  9. P. Patel and B. P. Suthar, Macromol. Chem., 29, 156 (1998).
  10. J. M. G. Cowie and H. H. Wu, Polymer, 29, 934 (1988). https://doi.org/10.1016/0032-3861(88)90158-9
  11. Y. W. Tang, J. P. Santerre, R. S. Labow, and D. G. Taylor, J. Appl. Polym. Sci., 62, 1133 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1133::AID-APP1>3.0.CO;2-J
  12. C. Tonelli, T. Trombetta, M. Scicchitano, and G. Castiglioni, J. Appl. Polym. Sci., 57, 1031 (1995). https://doi.org/10.1002/app.1995.070570902
  13. B. Y. Jeong, J. M. Cheon, C. S. Yoo, and J. H. Chun, J. Adhesion and Interface, 9, 12 (2008).
  14. H. J. Kim, Adhesion and Interface, 2, 31 (2001).
  15. P. Lloyd-Williams, F. Albericio, and E. Gkiralt, Chemical Approaches, CRC, Boca Raton. Florida (1997).
  16. R. B. Merrifield, J. Am. Chem. Soc., 85, 2149 (1963). https://doi.org/10.1021/ja00897a025
  17. B. Gutte and R. B. Merrifield, J. Am. Chem. Soc., 91, 501 (1969). https://doi.org/10.1021/ja01030a050
  18. P. Alexander and R. F. Hudson, Wool, Its Chemistry and Physics, Reinhold, New York (1954).
  19. F. Lucas, J. T. B. Shaw, and S. G. Smith, Adv. Protein Chem., 13, 107 (1958). https://doi.org/10.1016/S0065-3233(08)60599-9