DOI QR코드

DOI QR Code

Immobilization of Proteins on Silicon Surfaces Using Chemical and Electrochemical Reactions of Nitrobenzenediazonium Cations

나이트로벤젠다이아조늄 양이온의 화학 및 전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정

  • Published : 2010.02.27

Abstract

The immobilization of proteins on silicon surfaces using electrochemical reaction has been studied. Chemical deposition of nitrobenzendiazonium (NiBD) cations is employed to modify silicon surfaces. Electrochemical reduction of nitro-group to primary amine-group have been conducted on the modified surfaces to activate silicon surfaces for the protein immobilization. Attachment of gold nanoparticles was used to prove the reduction. The current method was applied to selective activation of a silicon nanowire and immobilize proteins on the selected nanowire. It has been demonstrated that the use of chemical and electrochemical reaction NiBD is efficient for the selective immobilization of proteins on silicon nanowire surfaces.

전기화학 반응을 이용한 실리콘 표면상으로의 단백질 고정을 연구하였다. 이를 위해 Nitrobenzendiazonium(NiBD) 양이온을 화학적 환원반응을 통해 수식하고 수식된 실리콘 표면을 전기화학적으로 다시 환원시켜 나이트로 기능기를 일차아민 기능기로 활성화하여 단백질 고정에 이용하였다. 활성화 된 표면에 금 나노입자를 고정하여 일차 아민 생성을 확인하였다. 또한 이 방법을 응용하여 실리콘 나노선 어레이 중 선택된 나노선 만을 활성화하고 단백질을 선택적으로 고정하는 연구를 수행하였다. 이 연구를 통하여 NiBD 양이온의 화학 및 전기화학 반응이 실리콘 나노선 표면으로 단백질의 선택적 고정화에 유용하게 사용될 수 있음을 보였다.

Keywords

References

  1. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, ‘Multiplexed Electrical Detection of Cancer Markers with Nanowire Sensor Arrays’ Nat. Biotechnol., 23, 1294 (2005). https://doi.org/10.1038/nbt1138
  2. M. N. Yousaf and M. Mrksich, ‘Diels-Alder Reaction for the Selective Immobilization of Protein to Electroactive Self-Assembled Monolayers’ J. Am. Chem. Soc., 121, 4286 (1999). https://doi.org/10.1021/ja983529t
  3. K. Kim, H. Yang, S. Jon, E. Kim, and J. Kwak, ‘Protein Patterning Based on Electrochemical Activation of Bioinactive Surfaces with Hydroquinone-Caged Biotin’ J. Am. Chem. Soc., 126, 15368 (2004). https://doi.org/10.1021/ja0459330
  4. A.-M. J. Haque, S.-R. Kwon, H. Park, T.-H. Kim, Y.-S. Oh, S.-Y. Choi, J.-D. Hong, and K. Kim, ‘Use of 1,3-Dithiane Combined with Aryldiazonium Cation for Immobilization of Biomolecules Based on Electrochemical Addressing’ Chem. Commun., 4865 (2009).
  5. Y. Bunimovich, G. Ge, R. Ries, K. Beverly, L. Hood, and J. Heath, ‘Electrochemically Programmed, Spatially Selective Biofunctionalization of Silicon Wires’ Langmuir, 20, 10630 (2004). https://doi.org/10.1021/la047913h
  6. S. Cosnier, ‘Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films’ Biosens. Bioelectron., 14, 443 (1999). https://doi.org/10.1016/S0956-5663(99)00024-X
  7. M. Delamar, R. Hitmi, J. Pinson, and J.-M. Savéant, ‘Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl Radicals Produced from Electrochemical Reduction of Diazonium Salts’ J. Am. Chem. Soc., 114, 5883 (1992). https://doi.org/10.1021/ja00040a074
  8. A. Shabani, A. Mak, W. H. Gerges, I. L. Cuccia, and M. F. Lawrence, ‘DNA Immobilization onto Electrochemically Functionalized Si(100) Surfaces’ Talanta, 70, 615 (2006). https://doi.org/10.1016/j.talanta.2006.01.033
  9. S. Griveau, D. Mercier, C. Vautrin-Ul, and A. Chausse, ‘Electrochemical Grafting by Reduction of 4-Aminoethylbenzenediazonium Salt: Application to the Immobilization of (Bio)Molecules’ Electrochem. Commun., 9, 2768 (2007). https://doi.org/10.1016/j.elecom.2007.09.004
  10. C.-S. Lee, S. E. Baker, M. S. Marcus, W. Yang, M. A. Eriksson, and R. J. Hamers, ‘Electrically Addressable Biomolecular Functionalization of Carbon Nanotube and Carbon Nanofiber Electrodes’ Nano Lett., 4, 1713 (2004). https://doi.org/10.1021/nl048995x
  11. S. Park, C. S. Ah, and K. Kim, ‘Spatially Selective Immobilization of Functional Materials onto Silicon Surfaces Using Electrochemical Method’ J. Kor. Electrochem. Soc., 12, 40 (2009). https://doi.org/10.5229/JKES.2009.12.1.040
  12. R. D. Rohde, H. D. Agnew, W.-S. Yeo, R. C. Bailey, and J. R. Heath, ‘A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si(111)’ J. Am. Chem. Soc., 128, 9518 (2006). https://doi.org/10.1021/ja062012b
  13. A. Kim, C. S. Ah, H. Y. Yu, J.-H. Yang, I.-B. Baek, C.-G. Ahn, C. W. Park, M. S. Jun, and S. Lee, ‘Ultrasensitive, Label-Free, and Real-Time Immunodetection Using Silicon Field-Effect Transistors’ Appl. Phys. Lett., 91, 103901 (2007). https://doi.org/10.1063/1.2779965
  14. C. J. Barrelet, D. B. Robinson, J. Cheng, T. P. Hunt, C. F. Quate, and C. E. D. Chidsey, ‘Surface Characterization and Electrochemical Properties of Alkyl, Fluorinated Alkyl, and Alkoxy Monolayers on Silicon’ Langmuir, 17, 3460 (2001). https://doi.org/10.1021/la010333p