DOI QR코드

DOI QR Code

Electrochemical Immobilization of Osmium Complex onto the Carbon Nano-Tube Electrodes and its Application for Glucose sensor

전기화학적인 방법을 이용한 탄소나노튜브 전극상의 오스뮴 착물의 고정화 및 혈당센서에 관한 응용

  • 최영봉 (단국대학교 첨단과학대학 화학과) ;
  • 전원용 (단국대학교 첨단과학대학 화학과) ;
  • 김혁한 (단국대학교 첨단과학대학 화학과)
  • Published : 2010.02.27

Abstract

The multi-wall carbon nano-tube composite mixed with carbon paste electrode presented more sensitive and selective amperometric signals in the oxidation of glucose than general screen-printed carbon electrodes(SPCEs). Redox mediators to transport electrodes from enzyme to electrodes are very important part in the biosensor. A novel osmium redox complex was synthesized by the coordinating pyridine group containing primary amines which were electrochemically immobilized onto the MWCNT-SPCEs surface. Electrochemical studies of osmium complexes were investigated by cyclic voltammetry, chronoamperometry. The surface coverage of osmium complexes on the modified carbon nano-tube electrodes were significantly increased at 100 time (${\tau}_0=2.0\;{\times}\;10^{-9}\;mole/cm^2$) compared to that of the unmodified carbon electrodes. It's practical application of the glucose biosensor demonstrated that it shows good linear response to the glucose concentration in the range of 0-10 mM.

Multi-wall carbon nano-tube(MWCNT)를 이용해 screen printed carbon electrodes(SPCEs)을 제작하여 혈당센서의 선택성과 감도가 증가됨을 확인 할 수 있었다. 효소촉매반응을 위한 탄소전극으로의 전자이동의 매개체로 8족 금속 원소인 오스뮴을 중심금속으로 일차 아민을 포함하는 피리딘(pyridine) 리간드를 배위시켜 $[Os(dme-bpy)_2(4-aPy)Cl]^{+/2+}$를 합성하였다. 합성된 오스뮴 착물은 순환 전압전류법을 포함한 다양한 전기화학분석방법을 이용하여 전기적 성질을 조사하였다. 전기적 흡착방법을 이용하여 일차 아민을 갖는 착화합물을 전극위에 고정화 하였다. 오스뮴이 고정화된 MWCNT-SPCEs는 일반적인 carbon electrode보다 약 100배가량의 오스뮴이 흡착됨을 확인 할 수 있었다. (${\tau}_0=2.0\;{\times}\;10^{-9}\;mole/cm^2$) 마지막으로 당(Glucose)과 당 분해효소(Glucose Oxidase, GOx)에 의한 촉매반응의 전류를 확인하였고, 당 농도에 따라 선형 변화하는 전류의 양도 확인하였다.

Keywords

References

  1. Q. Chi and S. Dong, ‘Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codepositio’ Anal. Chim. Acta., 310, 429 (1995). https://doi.org/10.1016/0003-2670(95)00152-P
  2. H. Liu, H. Li, T. Ying, K. Sun, Y. Qin, and D. Qi, ‘Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, $\beta$-galactosidase and mutarotase in $\beta$-cyclodextrin polyme’ Anal. Chim. Acta., 358, 137 (1998). https://doi.org/10.1016/S0003-2670(97)00576-X
  3. C. L. Chuang, Y. J. Wang, and H. L. Lan, ‘Amperometric glucose sensors based on ferrocene-containing B-polyethylenimine and immobilized glucose oxidase’ Anal. Chim. Acta., 353, 37 (1997). https://doi.org/10.1016/S0003-2670(97)00372-3
  4. I.-H. Yeo and D. C. Johnson, ‘Electrochemical response of small organic molecules at nickel-copper alloy electrode’ J. Electroanal. Chem., 495, 110 (2001). https://doi.org/10.1016/S0022-0728(00)00401-0
  5. C. Locatelli and G. Torsi, ‘Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference’ J. Electroanal. Chem., 509, 80 (2001). https://doi.org/10.1016/S0022-0728(01)00422-3
  6. Z. Hu, C. J. Seliskar, and W. R. Heineman, ‘PANincorporated Nafion-modified pectroscopic graphite electrodes for voltammetric stripping determination f lead’ Anal. Chim. Acta., 369, 93 (1998). https://doi.org/10.1016/S0003-2670(98)00203-7
  7. Z. Chen, Z. Pourabedi, and D.B. Hibbert, ‘Stripping voltammetry of Pb(II), Cu(II), and Hg(II) at a Nafion-coated glassy carbon electrode modified by neutral ionophores’ Electroanalysis, 11, 964 (1999). https://doi.org/10.1002/(SICI)1521-4109(199909)11:13<964::AID-ELAN964>3.0.CO;2-3
  8. S. Maria da Silva, ‘Determination of lead in the absence of supporting electrolyte using carbon fiber ultramicroelectrode without mercury film’ Electroanalysis, 10, 722 (1998). https://doi.org/10.1002/(SICI)1521-4109(199808)10:10<722::AID-ELAN722>3.0.CO;2-6
  9. M. V. Pishko, A. C. Michael, and Adam Heller, ‘Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels’ Anal. Chem., 63, 2269 (1991).
  10. H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H.C. Kim, ‘Glucose sensor using a microfabricated electrode and electropolymerized bilayer films’ Biosens. Bioelectron., 17, 251 (2002). https://doi.org/10.1016/S0956-5663(01)00266-4
  11. T. J. Ohara, R. Rajagopalan, and A. Heller, ‘ ‘Wired’ enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances’ Anal. Chem., 66, 2451 (1994). https://doi.org/10.1021/ac00087a008
  12. B. A. Gregg and A. Heller, ‘Redox polymer films containing enzymes’ J. Phys. Chem., 95, 5976 (1991). https://doi.org/10.1021/j100168a047
  13. J. Wang, ‘Present and future applications of carbon nanotubes to analytical science’ Electroanalysis, 17, 7-14 (2005). https://doi.org/10.1002/elan.200403113
  14. A. Wei, X. W. Wei, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, ‘Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition’ Appl. Phys. Lett., 89, 123902 (2006). https://doi.org/10.1063/1.2356307
  15. X. Luo, A Morrin, A. J. Killard, and M. R. Smyth, ‘Application of Nanoparticles in Electrochemical Sensors and Biosensors’ Electroanalysis, 18, 319-326 (2006). https://doi.org/10.1002/elan.200503415
  16. R. Ma, J. Liang, B. Wei, B. Zhang, and C. Xu, ‘Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte’ Bull. Chem. Soc. Jpn., 72, 2563 (1999). https://doi.org/10.1246/bcsj.72.2563
  17. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, ‘Carbon Nanotubes-the Route Toward Applications’ Appl. Phys. Lett., 70, 1480 (1997). https://doi.org/10.1063/1.118568
  18. Shidong Fei, Jinhua Chen, Shouzhuo Yao, Guohong Deng, Lihua Nie and Yafei Kuang. ‘Electroreduction of $\alpha$-glucose on CNT/graphite electrode modified by Zn and Zn--Fe alloy’ J. Solid. State. Electrochem., 9, 498 (2005). https://doi.org/10.1007/s10008-004-0585-y
  19. M. O. Finot, G. D. Braybrook, and M. T. McDermott, ‘Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 466, 234 (1999). https://doi.org/10.1016/S0022-0728(99)00154-0
  20. M. O. Finot and M. T. McDermott, ‘Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes’ J. Electroanal. Chem., 488, 125 (2000). https://doi.org/10.1016/S0022-0728(00)00201-1
  21. Y. Li and G. Shi, ‘Electrochemical Growth of Two-Dimensional Gold Nanostructures on a Thin Polypyrrole Film Modified ITO Electrode’ J. Phys. Chem. B, 109, 23787 (2005). https://doi.org/10.1021/jp055256b
  22. M. Josowicz and J. Janata, ‘in Electroactive Polymers’ ed. B. Scrosati, Chapman and Hall, New York, 1993, p. 310.
  23. R. W. Murray, ‘in Molecular Design of Electrode Surfaces’ ed. R. W. Murray, Wiley, New York, 1992, p. 1.
  24. A. Merz, ‘Direct electrochemical redox of tyrosinase at silver electrodes’ Top. Curr. Chem., 152, 49 (1990). https://doi.org/10.1007/BFb0034364
  25. J. Heinze, ‘Electronically conducting polymers’ Top. Curr. Chem., 152, 1 (1990). https://doi.org/10.1007/BFb0034363
  26. F. Bedioui, J. Devynck, and C. Bied-Charreton, ‘Immobilization of metalloporphyrins in electropolymerized films: design and applications’ Acc. Chem. Res., 28, 30 (1995). https://doi.org/10.1021/ar00049a005
  27. Leonidas G. Bachas, Lawrence Cullen, Richard S. Hutchins and Donna L. Scott ‘Synthesis, Characterization and electrochemical polymerization of eight transition-metal complexes of 5-amino-1,10-phenanthroline’ J. Chem. Soc., Dalton Trans., 1571 (1997).
  28. P. G. Pickup and R. A. Osteryoung, ‘Electropolymerization of iron phenanthrolines and voltammetric response for pH and application on electrocatalytic sulfite oxidation’ Inorg. Chem., 24, 2707 (1985). https://doi.org/10.1021/ic00211a026
  29. I. de Gregori, F. Bedioui, and J. Devynck, ‘Electrooxidative and electroreductive polymerization of 5-amino-1, 10-phenanthroline ligand, iron and cobalt complexes in acetonitrile media’ J. Electroanal. Chem. Interfacial Electrochem., 238, 197 (1987). https://doi.org/10.1016/0022-0728(87)85174-4
  30. F. W. M. Nyasulu and H. A. Mottola, ‘Electrochemical behavior of 5-amino-1,10-phenanthroline and oxidative electropolymerization of tris[5-amino-1,10-phenanthroline] iron(II)’ J. Electroanal. Chem. Interfacial Electrochem., 239, 175 (1988). https://doi.org/10.1016/0022-0728(88)80278-X
  31. C. D. Ellis, L. D. Margerum, R. W. Murray, and T. J. Meyer, ‘Oxidative electropolymerization of polypyridyl complexes of ruthenium’ Inorg. Chem., 22, 1283 (1983). https://doi.org/10.1021/ic00151a005
  32. C. Taylor, G. Kenausis, I. Katakis, and A. Heller, ‘Wiring of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4,4^'-dimethoxy-2,2^'-bipyridine)_2Cl]^{+/2+,}$ J. Electroanal. Chem., 396, 511 (1995). https://doi.org/10.1016/0022-0728(95)04080-8
  33. S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, ‘Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes’ J. Chem. Soc. Dalton Trans., 2247 (1985).
  34. D. M. Fraser, S. M. Zakeeruddin, and M. Gratzel, ‘Towards mediator design II. Optimization of mediator global charge for the mediation of glucose oxidase of Aspergilus niger’ J. Electroanal. Chem., 359, 125 (1993). https://doi.org/10.1016/0022-0728(93)80405-7
  35. E. S. Dodsworth, A. A. Vlcek, and A. B. P. Lever, ‘Factorization of Ligand-Based Reduction Potentials’ Inorg. Chem., 33, 1045 (1994). https://doi.org/10.1021/ic00084a013
  36. S. M. Zakeeruddin, D. M. Fraser, M-K Nazeeruddin, and M. Gratzel, ‘Towards mediator design: characterization of tris-(4,4'-substituted-2,2'- bipyridine complex of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergilus niger and other redox proteins’ J. Electroanal. Chem., 337, 253 (1992). https://doi.org/10.1016/0022-0728(92)80542-C
  37. Y.-B. Choi, and H.-H. Kim, ‘Synthesis of osmium redox complex and its application for biosensor using an electrochemical method’ Journal of the Korean Electrochemical Society., 10, 152 (2007). https://doi.org/10.5229/JKES.2007.10.2.150