광중합형 글라스아이오노머 시멘트의 탈회 저항성과 결합 강도에 대한 나노미터 입자의 하이드록시아파타이트의 효과

THE EFFECTS OF NANO-SIZED HYDROXYAPATITE ON DEMINERALIZATION RESISTANCE AND BONDING STRENGTH IN LIGHT-CURED GLASS IONOMER DENTAL CEMENT

  • 김지희 (연세대학교 치과대학 소아치과학교실) ;
  • 이용근 (연세대학교 치과대학 치과생체재료공학교실) ;
  • 김성오 (연세대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 송제선 (연세대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 최병재 (연세대학교 치과대학 소아치과학교실 및 구강과학연구소) ;
  • 최형준 (연세대학교 치과대학 소아치과학교실 및 구강과학연구소)
  • Kim, Ji-Hee (Department of pediatric Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Yong-Keun (Department of Dental materials & bioengineering, College of Dentistry, Yonsei University) ;
  • Kim, Seong-Oh (Department of pediatric Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Song, Je-Seon (Department of pediatric Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Choi, Byung-Jai (Department of pediatric Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University) ;
  • Choi, Hyung-Jun (Department of pediatric Dentistry and Oral Science Research Center, College of Dentistry, Yonsei University)
  • 발행 : 2010.02.26

초록

본 연구의 목적은 광중합형 글라스아이오노머 시멘트에 마이크로 입자의 하이드록시아파타이트와 나노미터 입자의 하이드록시아파타이트를 첨가하였을 때 물리적 성질과 탈회 저항, 결합 강도의 차이를 비교하기 위함이다. 실험에 사용된 광중합형 글라스아이오노머 시멘트는 Fuji II LC 였고 순수한 Fuji II LC GIC는 대조군으로, 15% micro HA- Fuji II LC GIC는 실험군 1, 15% nano HA- Fuji II LC GIC는 실험군 2로 설정한 후 실험을 진행하였고 다음과 같은 결론을 얻었다. 1. CLSM으로 탈회 표면 깊이를 관찰한 결과 대조군 보다 실험군에서 법랑질의 탈회가 덜 발생하였고, 실험군 1 보다 실험군 2에서 법랑질의 탈회가 적게 관찰되었다. 2. SEM을 이용한 탈회면 관찰시 대조군에서 법랑질의 탈회가 더 많이 일어났고, 실험군은 하이드록시아파타이트의 영향으로 탈회가 덜 일어나 표면입자가 보다 규칙적이었다. 두 실험군을 비교했을 때 실험군 2가 실험군 1 보다 탈회에 저항하였다. 3. 결합 강도는 대조군, 실험군 1, 실험군 2 순으로 증가했으며 세 군간에 통계학적으로 유의할 만한 차이가 있었다 (p < 0.05). 4. SEM 상에서 결합 강도 측정 후 파절된 면을 관찰한 결과 하이드록시아파타이트를 포함하는 실험군에서 골 유사 아파 타이트 추정 입자가 관찰되었으며 실험군 1 보다 실험군 2에서 더 많은 입자가 형성되었다.

The aim of this study was to evaluate the effect of incorporated nano HA on the demineralization resistance and bonding strength of LC GIC in comparison with micro HA. Fuji II LC GIC was used as the control group and a base material for experimental groups. Two experimental groups were prepared. One was prepared by adding 15% micro HA to LC GIC by weight ratio (Exp. 1), and the other was prepared by adding 15% nano HA instead (Exp. 2). According to the results, the following conclusions could be obtained. 1. Observing under the CLSM, the control group showed thicker enamel demineralization layer than in the experimental groups, and the Exp. 2 group showed the thinnest demineralization layer. 2. In SEM analysis, there was greater enamel demineralization in the control group. The Exp. 2 group was more resistant to demineralization compared to the Exp. 1 group. 3. The bonding strength was found to be in the increasing order of control, Exp. 1, and Exp. 2 group (p < 0.05). 4. Observing the fractured surfaces under SEM after the bonding strength test was performed, there were bone-like apatite particles formed in HA-added experimental groups, and a greater number of bone-like apatite particles were formed in the Exp. 2 group compared to the Exp. 1 group.

키워드

참고문헌

  1. Anderson P, Bollet-Quivogne FR, Dowker SE, et al. : Demineralization in enamel and hydroxyapatite aggregates at increasing ionic strength. Arch Oral Biol, 49:199-207, 2004. https://doi.org/10.1016/j.archoralbio.2003.10.001
  2. Santos C, Luklonska ZB, Clatke RL, et al. : Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites. J Mater Scien 12:565-573, 2001. https://doi.org/10.1023/A:1011291723503
  3. Yoon SI, Lee YK, Kim YU, et al. : The effects of hydroxyapatite on bonding strength between dental luting cement and human teeth. Key Eng Mater, 284-286:953-956, 2005. https://doi.org/10.4028/www.scientific.net/KEM.284-286.953
  4. Itthagarun A, King NM, Yiu C, et al. : The effect of chewing gums containing calcium phosphates on the remineralization of artificial caries-like lesions in situ. Caries Res, 39:251-254, 2005. https://doi.org/10.1159/000084806
  5. Jeong SH, Jang SO, Kim KN, et al. : Reminera-lization potential of new toothpaste containing nanohydroxyapatite. Key Eng Mater, 309-311:537-540, 2006. https://doi.org/10.4028/www.scientific.net/KEM.309-311.537
  6. Kuilong LV, Jiuxing Zhang, Xiangcai Meng, et al. : Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng Mater, 330-332:267-270, 2007. https://doi.org/10.4028/www.scientific.net/KEM.330-332.267
  7. Kim BI, Jeong SH, Jang SO, et al. : Tooth whitening effect of toothpastes containing nano-hydroxyapatite. Key Eng Mater, 309-311:541-544, 2006. https://doi.org/10.4028/www.scientific.net/KEM.309-311.541
  8. Kloke A, Tadic D, Kahl-Nieke B, et al. : An optimized synthetic substrate for orthodontic bond strength testing. Dent Mater, 13:773-778, 2003.
  9. Lowenstam HA, Weiner S : On biomineralization. Oxford: Oxford University Press, 1989.
  10. Arcis RW, Lopez-Macipe A, Toledano M, et al. : Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater, 18:49-57, 2002. https://doi.org/10.1016/S0109-5641(01)00019-7
  11. Domingo C, Arcis RW, Lopez-Macipe A, et al. : Dental composite reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics. J Biomed Mater Res, 56:297-305, 2001. https://doi.org/10.1002/1097-4636(200108)56:2<297::AID-JBM1098>3.0.CO;2-S
  12. Huang M, Feng J, Wang J, et al. : Synthesis and characterization of nano-HA/PA66 composites. J Mater Sci Mater Med, 14:655-660, 2003. https://doi.org/10.1023/A:1024087410890
  13. JH Kim, YK Lee, BJ Choi, et al. : The effects of hydroxyapatite on demineralization resistance and bonding strength in light-curing glass ionomer dental cement. Key Eng Mater, 396-398:485-488, 2009. https://doi.org/10.4028/www.scientific.net/KEM.396-398.485
  14. Gladys S, Van Meerbeek B, Braem M, et al. : Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res, 76:883-894, 1997. https://doi.org/10.1177/00220345970760041001
  15. Lucas ME, Kenji A, Mizuho N : Toughness, bonding and fluoride-release properties of hydroxyapatiteadded glass ionomer cement. Biomaterials, 24:3787-3794, 2003. https://doi.org/10.1016/S0142-9612(03)00260-6
  16. Arita K, Lucas ME, Nishino M : The effect of adding hydroxyapatite on the flexural strength of glass ionomer cement. Den Mater J, 22:126-136, 2003. https://doi.org/10.4012/dmj.22.126
  17. Gu YW, Yap AUJ, Cheang P, et al. : Effect of incorporation of HA/ZrO2 into glass ionomer cement (GIC). Biomaterials, 26:713-720, 2005. https://doi.org/10.1016/j.biomaterials.2004.03.019
  18. Glasspoole EA, Ericson RL, Davidson CL : Effect of surface treatments on the bond strength of glass ionomers to enamel. Dent Mater, 18:454-462, 2002. https://doi.org/10.1016/S0109-5641(01)00068-9
  19. 배익현, 김재문, 정태성 등 : 글라스 아이오노머 수복재의 불소 유리 및 재흡수 양상. 대한소아치과학회지, 32:136-143, 2005.
  20. 박영수, 김종수, 권순원 : Glass Ionomer 수복재의 초기 법랑질 우식증에 대한 효과. 대한소아치과학회지, 29:529-538, 2002.
  21. Mazzaoui SA, Burrow MF, Tyas MJ, et al. : Incorporation of Casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res, 82:914-918, 2003. https://doi.org/10.1177/154405910308201113
  22. Geiger SB, Weiner S : Fluoride carbonatoapatite in the intermediate layer between glass ionomer and dentin. Dent Mater, 9:33-36, 1993. https://doi.org/10.1016/0109-5641(93)90102-V
  23. Akinmade AO, Nicholson JW : Glass-ionomer cements as adhesive. Part I: Fundamental aspects and their clinical relevance. J Mater Sci Mater Med, 4:93-101, 1993.
  24. Alkinmade AO, Hill RG : Influence of cement layer thickness on the adhesive bond strength of polyalkenoate cements. Biomaterials, 13:931-936, 1992. https://doi.org/10.1016/0142-9612(92)90116-6
  25. Sennou HE, Lebugle AA, Gregorie GL : X-ray photoelectron spectroscopy study of the dentin-glass ionomer cement interface. Dent Mater, 15:229-237, 1999. https://doi.org/10.1016/S0109-5641(99)00036-6
  26. Ngo H, Mount GJ, and Peters MCRB : A study of glass-ionomer cements and its interface with enamel and dentin using a low temperature, high resolution scanning electron microscope technique. Quintessence Int, 28:63-69, 1997.
  27. Griffith AA : The phenomena of rupture and flow in solids. Philos Trans R Soc London A, 221:163-198, 1920.
  28. Tanumiharja M, Burrow MF, Ttas MJ : Microtensile bond strengths of glass ionomer (polyalkenoate) cements to dentine using four conditioners. J Dent, 28:361-366, 2000. https://doi.org/10.1016/S0300-5712(00)00009-9