DOI QR코드

DOI QR Code

Vibrio alginolyticus MviN is a LuxO-regulated Protein and Affects Cytotoxicity Towards Epithelioma Papulosum Cyprini (EPC) Cells

  • Cao, Xiaodan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Wang, Qiyao (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Liu, Qin (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Liu, Huan (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • He, Honghong (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Zhang, Yuanxing (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Published : 2010.02.28

Abstract

Vibrio alginolyticus, a Gram-negative marine bacterium, is one of the causative agents of fish vibriosis. Its virulence factors and pathogenesis mechanism are barely known, except for some extracellular products (ECPs) that are known to be regulated by quorum sensing system. Therefore, the present study used a microarray to analyze the transcription profiles of the wild-type V. alginolyticus and a deletion mutant of luxO, the pivotal regulator in Vibrio quorum sensing systems, which resulted in the identification of a putative virulence factor, MviN. Quantitative real-time reverse transcription PCR confirmed that the transcription of mviN was upregulated in the luxO mutant when compared with wild-type, and down regulated in a luxO-con complemented strain. Furthermore, Western blotting indicated that MviN was greatly induced during the late-exponential and stationary phases of growth, indicating that the expression of MviN was cell-density dependent and quorum sensing regulated in V. alginolyticus. Meanwhile, the mviN null mutant displayed a much slower growth rate than the wild type, signifying the essential role of MviN in V. alginolyticus. Western blotting also revealed that MviN was present as an extracellular protein in V. alginolyticus. When epithelioma papulosum cyprini (EPC) cells were treated with the ECPs of the mviN mutant, no cytotoxicity was observed, whereas EPC cells treated with the wild type exhibited pathological changes, which increased with the ECPs concentration and treatment time. Therefore, the results demonstrated that MviN is a LuxO-regulated ECPs component and involved in the pathogenicity of V. alginolyticus.

Keywords

References

  1. Aguirre-Guzman, G., H. M. Ruiz, and F. Ascencio. 2004. A review of extracellular virulence product of vibrio species important in diseases of cultivated shrimp. Aquac. Res. 35: 1395-1404. https://doi.org/10.1111/j.1365-2109.2004.01165.x
  2. Balebona, M. C., M. J. Andreu, M. A. Bordas, I. Zorrilla, M. A. Morinigo, and J. J. Borrego. 1998. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.). Appl. Environ. Microbiol. 64: 4269-4275.
  3. Cai, S. H., Z. H. Wu, J. C. Jian, and Y. S. Lu. 2007. Cloning and expression of gene encoding the thermostable direct hemolysin from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis of crimson snapper (Lutjanus erythopterus). J. Appl. Microbiol. 103: 289-296. https://doi.org/10.1111/j.1365-2672.2006.03250.x
  4. Cai, S. H., Z. H. Wu, J. C. Jian, and Y. S. Lu. 2007. Cloning and expression of the gene encoding an extracellular alkaline serine protease from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis in Lutjanus erythopterus (Bloch). J. Fish Dis. 30: 493-500. https://doi.org/10.1111/j.1365-2761.2007.00835.x
  5. Carsiotis, M., B. A. Stocker, D. L. Weinstein, and A. D. O'Brien. 1989. A Salmonella typhimurium virulence gene linked to flg. Infect. Immun. 57: 3276-3280.
  6. Chen, F. R., P. C. Liu, and K. K. Lee. 2000. Lethal attribute of serine protease secreted by Vibrio alginolyticus strains in Kuruma prawn Penaeus japonicus. Z. Naturforsch. 55: 94-99.
  7. Chien, J. Y., J. T. Shih, P. R. Hsueh, P. C. Yang, and K. T. Luh. 2002. Vibrio alginolyticus as the cause of pleural empyema and bacteremia in an immunocompromised patient. Eur. J. Clin. Microbiol. Infect. Dis. 21: 401-403. https://doi.org/10.1007/s10096-002-0726-0
  8. Croxatto, A., V. J. Chalker, J. Lauritz, J. Jass, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184: 1617-1629. https://doi.org/10.1128/JB.184.6.1617-1629.2002
  9. Croxatto, A., J. Pride, A. Hardman, P. Williams, M. Camara, and D. L. Milton. 2004. A distinctive dual-channel quorumsensing system operates in Vibrio anguillarum. Mol. Microbiol. 52: 1677-1689. https://doi.org/10.1111/j.1365-2958.2004.04083.x
  10. Dennis, J. J. and G. J. Zylstra. 1998. Plasposons: Modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Microbiol. 64: 2710-2715.
  11. Fiocca, R., V. Necchi, P. Sommi, V. Ricci, J. Telford, T. L. Cover, and E. Solcia. 1999. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188: 220-226. https://doi.org/10.1002/(SICI)1096-9896(199906)188:2<220::AID-PATH307>3.0.CO;2-C
  12. Gamazo, C. and I. Moriyon. 1987. Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect. Immun. 55: 609-615.
  13. Gomez-Leon, J., L. Villamil, M. L. Lemos, B. Novoa, and A. Figueras. 2005. Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. Appl. Environ. Microbiol. 71: 98-104. https://doi.org/10.1128/AEM.71.1.98-104.2005
  14. Gonzalez-Escalona, N., G. M. Blackstone, and A. DePaola. 2006. Characterization of a Vibrio alginolyticus strain, isolated from Alaskan oysters, carrying a hemolysin gene similar to the thermostable direct hemolysin-related hemolysin gene (trh) of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 72: 7925-7929. https://doi.org/10.1128/AEM.01548-06
  15. Henke, J. M. and B. L. Bassler. 2004. Three parallel quorumsensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186: 6902-6914. https://doi.org/10.1128/JB.186.20.6902-6914.2004
  16. Jayaprakash, N. S., S. S. Pai, R. Philip, and I. S. Singh. 2006. Isolation of a pathogenic strain of Vibrio alginolyticus from necrotic larvae of Macrobrachium rosenbergii (de Man). J. Fish Dis. 29: 187-191. https://doi.org/10.1111/j.1365-2761.2006.00690.x
  17. Keenan, J., T. Day, S. Neal, B. Cook, G. Perez-Perez, R. Allardyce, and P. Bagshaw. 2000. A role for the bacterial outer membrane in the pathogenesis of Helicobacter pylori infection. FEMS Microbiol. Lett. 182: 259-264. https://doi.org/10.1111/j.1574-6968.2000.tb08905.x
  18. Kenneth, J. L. and D. S. Thomas. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C} $T method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  19. Lee, K. K., S. R. Yu, and P. C. Liu. 1997. Alkaline serine protease is an exotoxin of Vibrio alginolyticus in Kuruma prawn, Penaeus japonicus. Curr. Microbiol. 34: 110-117. https://doi.org/10.1007/s002849900153
  20. Lee, K. K., S. R. Yu, T. I. Yang, P. C. Liu, and F. R. Chen. 1996. Isolation and characterization of Vibrio alginolyticus isolated from diseased Kuruma prawn, Penaeus japonicus. Lett. Appl. Microbiol. 22: 111-114. https://doi.org/10.1111/j.1472-765X.1996.tb01121.x
  21. Liang, W., S. Wang, F. Yu, L. Zhang, G. Qi, Y. Liu, S. Gao, and B. Kan. 2003. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect. Immun. 71: 5498-5504. https://doi.org/10.1128/IAI.71.10.5498-5504.2003
  22. Ling, J. M., R. A. Moore, M. G. Surette, and D. E. Woods. 2006. The mviN homolog in Burkholderia pseudomallei is essential for viability and virulence. Can. J. Microbiol. 52: 831-842. https://doi.org/10.1139/w06-042
  23. Liu, C. H., W. Cheng, J. P. Hsu, and J. C. Chen. 2004. Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis. Aquat. Organ. 61: 169-174. https://doi.org/10.3354/dao061169
  24. MacIntyre, S., T. J. Trust, and J. T. Buckley. 1980. Identification and characterization of outer membrane fragments released by Aeromonas sp. Can. J. Biochem. 58: 1018-1025. https://doi.org/10.1139/o80-138
  25. Milton, D. L., A. Norqvist, and H. Wolf-Watz. 1992. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J. Bacteriol. 174: 7235-7244.
  26. Morales, V. M., A. Backman, and M. Bagdasarian. 1991. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97: 39-47. https://doi.org/10.1016/0378-1119(91)90007-X
  27. Morelle, S., E. Carbonnelle, and X. Nassif. 2003. The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J. Bacteriol. 185: 2618-2627. https://doi.org/10.1128/JB.185.8.2618-2627.2003
  28. O'Connell, K. P., S. J. Raffel, B. J. Saville, and J. Handelsman. 1998. Mutants of Rhizobium tropici strain CIAT899 that do not induce chlorosis in plants. Microbiology 144: 2607-2617. https://doi.org/10.1099/00221287-144-9-2607
  29. Reed, L. J. and H. Muench. 1938. A simple method of estimating fifty percent end points. Am. J. Hyg. 27: 493-497.
  30. Rudnick, P. A., T. Arcondeguy, C. K. Kennedy, and D. Kahn. 2001. glnD and mviN are genes of an essential operon in Sinorhizobium meliloti. J. Bacteriol. 183: 2682-2685. https://doi.org/10.1128/JB.183.8.2682-2685.2001
  31. Rui, H., Q. Liu, Y. Ma, Q. Wang, and Y. Zhang. 2008. Roles of LuxR in regulating extracellular alkaline serine protease A, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol. Lett. 285: 155-162. https://doi.org/10.1111/j.1574-6968.2008.01185.x
  32. Rui, H., Q. Liu, Q. Wang, Y. Ma, H. Liu, C. Shi, and Y. Zhang. 2009. Role of alkaline serine protease Asp in Vibrio alginolyticus virulence and regulation of its expression by LuxO-LuxR regulatory system. J. Microbiol. Biotechnol. 19: 431-438. https://doi.org/10.4014/jmb.0807.404
  33. Ruiz, N. 2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 105: 15553-15557. https://doi.org/10.1073/pnas.0808352105
  34. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A.
  35. Tian, Y., Q. Wang, Q. Liu, Y. Ma, X. Cao, and Y. Zhang. 2008. Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch. Microbiol. 190: 585-594. https://doi.org/10.1007/s00203-008-0410-6
  36. Vance, R. E., J. Zhu, and J. J. Mekalanos. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71: 2571-2576. https://doi.org/10.1128/IAI.71.5.2571-2576.2003
  37. Vazquez-Juarez, R. C., H. A. Barrera-Saldana, N. Y. Hernandez-Saavedra, M. Gomez-Chiarri, and F. Ascencio. 2003. Molecular cloning, sequencing and characterization of omp48, the gene encoding for an antigenic outer membrane protein from Aeromonas veronii. J. Appl. Microbiol. 94: 908-918. https://doi.org/10.1046/j.1365-2672.2003.01928.x
  38. Wang, Q., Q. Liu, Y. Ma, H. Rui, and Y. Zhang. 2007. LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J. Appl. Microbiol. 103: 1525-1534. https://doi.org/10.1111/j.1365-2672.2007.03380.x
  39. Xie, Z. Y., C. Q. Hu, C. Chen, L. P. Zhang, and C. H. Ren. 2005. Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong, China. Lett. Appl. Microbiol. 41: 202-207. https://doi.org/10.1111/j.1472-765X.2005.01688.x
  40. Zhu, J., M. B. Miller, R. E. Vance, M. Dziejman, B. L. Bassler, and J. J. Mekalanos. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 99: 3129-3134. https://doi.org/10.1073/pnas.052694299

Cited by

  1. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine vol.91, pp.2, 2010, https://doi.org/10.1007/s00253-011-3286-3
  2. Ethanolamine utilization in Vibrio alginolyticus vol.7, pp.None, 2010, https://doi.org/10.1186/1745-6150-7-45
  3. Characterization of a new quorum sensing regulator luxT and its roles in the extracellular protease production, motility, and virulence in fish pathogen Vibrio alginolyticus vol.194, pp.6, 2010, https://doi.org/10.1007/s00203-011-0774-x
  4. A σ E -Mediated Temperature Gauge Controls a Switch from LuxR-Mediated Virulence Gene Expression to Thermal Stress Adaptation in Vibrio alginolyticus vol.12, pp.6, 2010, https://doi.org/10.1371/journal.ppat.1005645
  5. Mechanisms underlying the virulence regulation of new Vibrio alginolyticus ncRNA Vvrr1 with a comparative proteomic analysis vol.8, pp.1, 2010, https://doi.org/10.1080/22221751.2019.1687261
  6. Alternative Sigma Factor RpoX Is a Part of the RpoE Regulon and Plays Distinct Roles in Stress Responses, Motility, Biofilm Formation, and Hemolytic Activities in the Marine Pathogen Vibrio alginolyti vol.85, pp.14, 2010, https://doi.org/10.1128/aem.00234-19
  7. Quorum sensing in Aliivibrio wodanis 06/09/139 and its role in controlling various phenotypic traits vol.9, pp.None, 2010, https://doi.org/10.7717/peerj.11980