DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of Two Major Endoglucanases from Penicillium decumbens

  • Wei, Xiao-Min (State Key Laboratory of Microbial Technology) ;
  • Qin, Yu-Qi (School of Pharmaceutical Science Shandong University) ;
  • Qu, Yin-Bo (State Key Laboratory of Microbial Technology)
  • Published : 2010.02.28

Abstract

Two major endoglucanase genes (cel7B and cel5A) were cloned from Penicillium decumbens 114-2 using the method of modified thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The result of Southern blotting suggested that P. decumbens has a single copy of the cel5A gene and a single copy of the cel7B gene in its chromosomal DNA. The expression levels of cel5A and cel7B were determined by means of real-time quantitative PCR, suggesting that the two genes were coordinately expressed, and repressed by glucose and induced by cellulose. Both endoglucanase genes were expressed in Saccharomyces cerevisiae and the recombinant proteins were purified. The recombinant Cel7B and Cel5A were both optimally active at $60^{\circ}C$ and pH 4.0. The recombinant Cel7B showed more than 8-fold, 30-fold, and 5-fold higher enzyme activities toward carboxymethyl cellulose, barley $\beta$-glucan, and PASC, respectively, in comparison with that of Cel5A. However, their activities toward pNPC and Avicel showed minor differences. The results suggested that Cel7B is a strict endoglucanase, whereas Cel5A showed processivity because of its relative higher ability to hydrolyze the crystal cellulose.

Keywords

References

  1. Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739. https://doi.org/10.1016/j.femsre.2004.11.006
  2. Bedford, M. R. 1995. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 53: 145-155. https://doi.org/10.1016/0377-8401(95)02018-U
  3. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  4. Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
  5. Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  6. Castellanos, O. F., P. Sinitsyn, and E. Y. Vlasenkko. 1995. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresour. Technol. 52: 119-124. https://doi.org/10.1016/0960-8524(95)00011-3
  7. Cohen, R., M. R. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417. https://doi.org/10.1128/AEM.71.5.2412-2417.2005
  8. Covert, S. F., A. V. Wymelenberg, and D. Cullen. 1992. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 2168-2175.
  9. Dillon, A. J. P., C. Zorgi, M. Camassola, and J. A. P. Henriques. 2005. Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and $\beta$-glucosidase activities. Appl. Microbiol. Biotechnol. 70: 740-746.
  10. Dillon, A. J. P., S. P. Toresan, and L. B. Barp. 1992. Isolation of cellulase producing mutants from Penicillium sp. strains denominated 3MUV3424. Rev. Bras. Genet. 15: 491-498.
  11. Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95. https://doi.org/10.1016/0378-1119(89)90339-9
  12. Henrissat, B., H. Driguez, C. Viet, and M. Schülein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726. https://doi.org/10.1038/nbt0885-722
  13. Ilmen, M., A. Saloheimo, M. Onnela, and M. E. Penttila. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298-1306.
  14. Jorgensen, H., A. Morkeberg, K. B. R. Krogh, and L. Olsson. 2005. Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol. 36: 42-48. https://doi.org/10.1016/j.enzmictec.2004.03.023
  15. Karlsson, J., D. Momcilovic, B. Wittgren, M. Schulein, F. Tjerneld, and G. Brinkmalm. 2002. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A, and Cel45A core from Trichoderma reesei. Biopolymers 63: 32-40. https://doi.org/10.1002/bip.1060
  16. Karlsson, J., M. Siika-aho, M. Tenkanen, and F. Tjerneld. 2002. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J. Biotechnol. 99: 63-78. https://doi.org/10.1016/S0168-1656(02)00156-6
  17. Koch, A., C. T. Weigel, and G. Schulz. 1993. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbhl) from Penicillium janthinellum. Gene 124: 57-65. https://doi.org/10.1016/0378-1119(93)90761-Q
  18. Larriba, G. and R. Cueva. 2001. The major exoglucanase secreted by Saccharomyces cerevisiae as a model to study protein glycosylation. Biomol. Eng. 18: 135-142. https://doi.org/10.1016/S1389-0344(01)00094-6
  19. Liu, Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whittier. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463. https://doi.org/10.1046/j.1365-313X.1995.08030457.x
  20. Martins, L. F., D. Kolling, M. Camassola, A. J. P. Dillon, and L. P. Ramos. 2008. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99: 1417-1424. https://doi.org/10.1016/j.biortech.2007.01.060
  21. Mo, H., X. Zhang, and Z. Li. 2004. Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem. 39: 1293-1297. https://doi.org/10.1016/S0032-9592(03)00291-7
  22. Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
  23. Omiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their application. Biotechnol. Genet. Eng. Rev. 14: 365-414. https://doi.org/10.1080/02648725.1997.10647949
  24. Qin, Y., X. Wei, X. Liu, T. Wang, and Y. Qu. 2008. Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr. Purif. 58: 162-169. https://doi.org/10.1016/j.pep.2007.09.004
  25. Qu, Y., P. Gao, and Z. Wang. 1984. Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol. Sinica (Chinese) 3: 238-243.
  26. Qu, Y., X. Zhao, P. Gao, and Z. Wang. 1991. Cellulase production from spent sulfite liquor and paper-mill waste fiber. Appl. Biochem. Biotechnol. 28: 363-368. https://doi.org/10.1007/BF02922615
  27. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
  28. Stricher, A. R., L. R. Mach, and L. H. de Graaff. 2007. Regulation of transcription of cellulases- and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina. Appl. Microbiol. Biotechnol. 78: 211-220.
  29. Sun, X., Z. Liu, K. Zheng, X. Song, and Y. Qu. 2008. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol. 42: 560-567. https://doi.org/10.1016/j.enzmictec.2008.01.020
  30. Suominen, P. L., A. L. Mäntylä, T. Karhunen, S. Hakola, and H. Nevalainen. 1993. High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol. Gen. Genet. 241: 523-530. https://doi.org/10.1007/BF00279894
  31. Suurnakki, A., M. Tenkanen, M. Siika-aho, M.-L. Niku-paavola, L. Viikari, and J. Buchert. 2000. Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7: 189-209. https://doi.org/10.1023/A:1009280109519
  32. Wonganu, B., K. Pootanakit, K. Boonyapakron, V. Champreda, S. Tanapongpipat, and L. Eurwilaichitr. 2008. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr. Purif. 58: 78-86. https://doi.org/10.1016/j.pep.2007.10.022
  33. Yoon, J.-J., C.-J. Cha, Y.-S. Kim, and W. Kim. 2008. Degradation of cellulose by the major endoglucanase produced from the brownrot fungus Fomitopsis pinicola. Biotech. Lett. 30: 1373-1378.
  34. Zverlov, V. V., N. Schantz, and W. H. Schwarz. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-$\beta$-1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249: 353-358. https://doi.org/10.1016/j.femsle.2005.06.037

Cited by

  1. Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens vol.8, pp.2, 2010, https://doi.org/10.1371/journal.pone.0055185
  2. Protein fingerprinting in the choice of cellulase cocktails for the conversion of lignocellulosic biomass vol.6, pp.12, 2010, https://doi.org/10.1039/c3ay42221f
  3. Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum vol.8, pp.None, 2010, https://doi.org/10.1186/s13068-015-0253-8
  4. Fungal Cellulases vol.115, pp.3, 2010, https://doi.org/10.1021/cr500351c
  5. A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137485
  6. β-1,4-endoglucanases from Talaromyces amestolkiae: Production of glucooligosaccharides from different β-glucans vol.36, pp.1, 2010, https://doi.org/10.1080/10242422.2017.1306741
  7. Cellulases from Thermophiles Found by Metagenomics vol.6, pp.3, 2010, https://doi.org/10.3390/microorganisms6030066
  8. Effect of endoglucanases from different glycoside hydrolase families on enzymatic preparation of cellulose nanocrystal vol.155, pp.None, 2010, https://doi.org/10.1016/j.indcrop.2020.112755