References
- Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739. https://doi.org/10.1016/j.femsre.2004.11.006
- Bedford, M. R. 1995. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 53: 145-155. https://doi.org/10.1016/0377-8401(95)02018-U
- Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
- Bendtsen, J. D., H. Nielsen, G. von Heijne, and S. Brunak. 2004. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340: 783-795. https://doi.org/10.1016/j.jmb.2004.05.028
- Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15: 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
- Castellanos, O. F., P. Sinitsyn, and E. Y. Vlasenkko. 1995. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresour. Technol. 52: 119-124. https://doi.org/10.1016/0960-8524(95)00011-3
- Cohen, R., M. R. Suzuki, and K. E. Hammel. 2005. Processive endoglucanase active in crystalline cellulose hydrolysis by the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol. 71: 2412-2417. https://doi.org/10.1128/AEM.71.5.2412-2417.2005
- Covert, S. F., A. V. Wymelenberg, and D. Cullen. 1992. Structure, organization, and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 2168-2175.
-
Dillon, A. J. P., C. Zorgi, M. Camassola, and J. A. P. Henriques. 2005. Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and
$\beta$ -glucosidase activities. Appl. Microbiol. Biotechnol. 70: 740-746. - Dillon, A. J. P., S. P. Toresan, and L. B. Barp. 1992. Isolation of cellulase producing mutants from Penicillium sp. strains denominated 3MUV3424. Rev. Bras. Genet. 15: 491-498.
- Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J. P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83-95. https://doi.org/10.1016/0378-1119(89)90339-9
- Henrissat, B., H. Driguez, C. Viet, and M. Schülein. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3: 722-726. https://doi.org/10.1038/nbt0885-722
- Ilmen, M., A. Saloheimo, M. Onnela, and M. E. Penttila. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298-1306.
- Jorgensen, H., A. Morkeberg, K. B. R. Krogh, and L. Olsson. 2005. Production of cellulases and hemicellulases by three Penicillium species: Effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol. 36: 42-48. https://doi.org/10.1016/j.enzmictec.2004.03.023
- Karlsson, J., D. Momcilovic, B. Wittgren, M. Schulein, F. Tjerneld, and G. Brinkmalm. 2002. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A, and Cel45A core from Trichoderma reesei. Biopolymers 63: 32-40. https://doi.org/10.1002/bip.1060
- Karlsson, J., M. Siika-aho, M. Tenkanen, and F. Tjerneld. 2002. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J. Biotechnol. 99: 63-78. https://doi.org/10.1016/S0168-1656(02)00156-6
- Koch, A., C. T. Weigel, and G. Schulz. 1993. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbhl) from Penicillium janthinellum. Gene 124: 57-65. https://doi.org/10.1016/0378-1119(93)90761-Q
- Larriba, G. and R. Cueva. 2001. The major exoglucanase secreted by Saccharomyces cerevisiae as a model to study protein glycosylation. Biomol. Eng. 18: 135-142. https://doi.org/10.1016/S1389-0344(01)00094-6
- Liu, Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whittier. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463. https://doi.org/10.1046/j.1365-313X.1995.08030457.x
- Martins, L. F., D. Kolling, M. Camassola, A. J. P. Dillon, and L. P. Ramos. 2008. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour. Technol. 99: 1417-1424. https://doi.org/10.1016/j.biortech.2007.01.060
- Mo, H., X. Zhang, and Z. Li. 2004. Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem. 39: 1293-1297. https://doi.org/10.1016/S0032-9592(03)00291-7
- Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380.
- Omiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their application. Biotechnol. Genet. Eng. Rev. 14: 365-414. https://doi.org/10.1080/02648725.1997.10647949
- Qin, Y., X. Wei, X. Liu, T. Wang, and Y. Qu. 2008. Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr. Purif. 58: 162-169. https://doi.org/10.1016/j.pep.2007.09.004
- Qu, Y., P. Gao, and Z. Wang. 1984. Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol. Sinica (Chinese) 3: 238-243.
- Qu, Y., X. Zhao, P. Gao, and Z. Wang. 1991. Cellulase production from spent sulfite liquor and paper-mill waste fiber. Appl. Biochem. Biotechnol. 28: 363-368. https://doi.org/10.1007/BF02922615
- Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 195: 19-23.
- Stricher, A. R., L. R. Mach, and L. H. de Graaff. 2007. Regulation of transcription of cellulases- and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina. Appl. Microbiol. Biotechnol. 78: 211-220.
- Sun, X., Z. Liu, K. Zheng, X. Song, and Y. Qu. 2008. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol. 42: 560-567. https://doi.org/10.1016/j.enzmictec.2008.01.020
- Suominen, P. L., A. L. Mäntylä, T. Karhunen, S. Hakola, and H. Nevalainen. 1993. High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol. Gen. Genet. 241: 523-530. https://doi.org/10.1007/BF00279894
- Suurnakki, A., M. Tenkanen, M. Siika-aho, M.-L. Niku-paavola, L. Viikari, and J. Buchert. 2000. Trichoderma reesei cellulases and their core domains in the hydrolysis and modification of chemical pulp. Cellulose 7: 189-209. https://doi.org/10.1023/A:1009280109519
- Wonganu, B., K. Pootanakit, K. Boonyapakron, V. Champreda, S. Tanapongpipat, and L. Eurwilaichitr. 2008. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expr. Purif. 58: 78-86. https://doi.org/10.1016/j.pep.2007.10.022
- Yoon, J.-J., C.-J. Cha, Y.-S. Kim, and W. Kim. 2008. Degradation of cellulose by the major endoglucanase produced from the brownrot fungus Fomitopsis pinicola. Biotech. Lett. 30: 1373-1378.
-
Zverlov, V. V., N. Schantz, and W. H. Schwarz. 2005. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-
$\beta$ -1,4-glucanase producing cellotetraose. FEMS Microbiol. Lett. 249: 353-358. https://doi.org/10.1016/j.femsle.2005.06.037
Cited by
- Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System of Penicillium decumbens vol.8, pp.2, 2010, https://doi.org/10.1371/journal.pone.0055185
- Protein fingerprinting in the choice of cellulase cocktails for the conversion of lignocellulosic biomass vol.6, pp.12, 2010, https://doi.org/10.1039/c3ay42221f
- Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum vol.8, pp.None, 2010, https://doi.org/10.1186/s13068-015-0253-8
- Fungal Cellulases vol.115, pp.3, 2010, https://doi.org/10.1021/cr500351c
- A Novel GH7 Endo-β-1,4-Glucanase from Neosartorya fischeri P1 with Good Thermostability, Broad Substrate Specificity and Potential Application in the Brewing Industry vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137485
- β-1,4-endoglucanases from Talaromyces amestolkiae: Production of glucooligosaccharides from different β-glucans vol.36, pp.1, 2010, https://doi.org/10.1080/10242422.2017.1306741
- Cellulases from Thermophiles Found by Metagenomics vol.6, pp.3, 2010, https://doi.org/10.3390/microorganisms6030066
- Effect of endoglucanases from different glycoside hydrolase families on enzymatic preparation of cellulose nanocrystal vol.155, pp.None, 2010, https://doi.org/10.1016/j.indcrop.2020.112755