Assessment Study on Educational Programs for the Gifted Students in Mathematics

영재학급에서의 수학영재프로그램 평가에 관한 연구

  • Published : 2010.02.15

Abstract

Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

21세기는 새로운 지식을 창조할 수 있는 창의적인 인재가 국가발전을 이끈다는 시대적 관심에 따라 세계 여러 나라가 영재교육에 관심을 쏟고 있다. 우리가 잘 알고 있는 미국, 영국, 러시아, 독일, 호주, 이스라엘, 싱가포르 등 영재교육에 관한 관련법을 제정하여 영재교육을 실시하고 있으며 우리나라도 2000년 1월 영재교육진흥법이 공포되고 2002년 4월 영재교육진흥법시행령이 공포 시행됨으로써 영재교육의 활성화의 계기를 마련하게 되었다. 그리고 2008년 10월 영재교육진홍법의 시행령을 개정하였는데 그 주요 취지는 영재교육을 특수교육대상자와 소외계층까지 영재교육의 기회를 확대하는 방안의 마련이다. 이러한 방안의 하나로 각급 학교에 영재학급의 설치를 확대하여 영재교육의 기회를 많은 학생들에게 제공할 수 있도록 하고 있다. 하지만 영재교육의 기회의 확대와 함께 영재교육의 질에 관하여 생각을 해봐야 할 것이다. 무분별한 기회의 확대라는 사회적 견해에 대해 영재학급에서 진행하고 있는 교수-학습 프로그램의 질적인 부분에 대한 평가의 필요성이 요구된다. 본 연구에서는 영재학급을 운영하고 있는 3학교의 중학교 1학년 수학-교수 학습 프로그램을 정규교육과정과 영재교육과정의 비교표를 통해 각각의 해당영역을 살펴보고 영재교육과정 중 어느 영역의 내용을 다루는지 살펴보고 수학-교수 학습 프로그램을 기존에 개발된 평가 틀을 수정 보완한 프로그램 평가기준에 맞추어서 프로그램을 평가해보았다. 따라서 본 연구에서는 영재학급의 수학 영재 교수-학습 프로그램의 내용영역의 구성과 프로그램의 적절성을 평가하기 위해 다음과 같은 연구문제를 선정하였다. 가. 영재학급의 수학 영재 교수-학습 프로그램의 주제에 따른 내용영역의 구성은 7차 교육과정에 따른 것인가? 1. 정규 교육과정의 어떤 내용 영역에 해당하는 프로그램인가? 2. 영재교육과정 중에서 심화와 선택 중 어느 영역에 해당하는 프로그램인가? 3. 내용 영역이 적절하게 편성되어 운영되고 있는가? 나. 영재학급의 수학 영재 교수-학습 프로그램은 적절한가? 1. 교수-학습 프로그램의 교육목표는 수학영재교육의 교육목표에 일치하는가? 2. 프로그램의 내용은 수학영재교육의 특성을 반영하고 학생들의 영재성을 발현시키는가? 3. 교수-학습 모형과 방법은 학생들의 영재성을 발현시킬 수 있도록 다양한가? 4. 프로그램의 평가는 학습목표와 내용, 사고력의 향상정도를 반영하는가? 이러한 연구문제를 바탕으로 다음과 같은 결론을 얻었다. 첫째, 영재학급의 수학 영재 교수-학습 프로그램의 주제에 따른 내용은 정규 교육과정의 수와 연산과 도형, 측정, 확률과 통계, 문자와 식의 영역에 해당하는 프로그램이었으며 함수영역에 관한 내용을 직접적으로 다루지는 않았고 주로 수와 연산과 도형 영역에 관한 내용이 프로그램의 주를 이루고 있었다. 또 영재교육과정 중에서는 심화 영역과 선택 영역의 내용을 학생들의 영재성을 발현시킬 수 있는 다양한 형태로 적절히 제시하고 있었다. 둘째, 영재학급의 수학 영재 교수-학습 프로그램의 교육목표는 수학영재의 방향과 철학에 일치하며 영재의 특성을 반영하여 일반 학생들에게 제시되는 학습목표와는 달리 학생들의 창의성인 문제해결력을 함양하고 주변 사물에 대해 호기심을 가지고 끊임없이 탐구하는 태도와 해당 교과 영역에서 요구되는 사고능력과 탐구능력, 연구 조사기술을 함양하는 등의 학습목표를 제시하고 있다. 또한 사고전략에 있어서는 시각화, 기호화, 단계화, 탐구 전략을 사용하였으며 교수-학습 모형으로 강의식, 협동학습, 발견학습, 문제해결기반학습을 적용하였으며 교수-학습 활동으로 실험, 탐구, 적용, 예상과 추측, 토론(추측과 반박), 적용, 반성의 활동을 통해 학생들의 영재성을 발현시킬 수 있는 다양한 형태의 교수-학습 전략 및 모형을 활용하였으며 교수-학습 프로그램에서 사전 평가에 대한 언급을 하지는 않았지만 프로그램 활동을 진행하는 과정에서 학습목표를 반영하였으며 학생들의 사고력을 향상시킬 수 있도록 여러 가지 활동을 통하여 원하는 평가를 지필평가의 형태보다는 산출물과 수행평가 그리고 포트폴리오를 가지고 평가하는 방법을 주로 사용하였다.

Keywords

References

  1. 교육과학기술부 (2008). 새 정부의 영재교육 정책방향과 현안 : 과학영재교육을 중심으로. 교육인적자원부 고시 제 2006-75호 및 제 2007-79호.
  2. 구자억.조석희.김홍원.서혜애.장영숙.황동주.임희준 (1999). 영재교육과정 개발 연구: 초.중학교 영재교육과정 시안 개발을 위한 기초 연구. CR 99-20. 한국교육개발원.
  3. 박성익.조석희.김홍원.이지현.윤여홍.진석언.한기순 (2004). 서울: 교육과학사.
  4. 서혜애.조석희.이은아.한석실.윤초희 (2003). 영재교육기관 평가체제 개발연구. 연구보고 CR2003-27. 한국교육개발원.
  5. 송준기 (2004). 영재교육 프로그랩 평정척도 개발 및 적용. 계명대학교 박사학위논문.
  6. 송진희 (2008). 수학영재교육에서 효율적인 프로그램 평가에 관한 연구. 서울시립대학교 석사학위논문.
  7. 서울시 교육청 영재교육평가 수학영재교육 프로그램 수정틀.2009.
  8. 유연정 (2008). 수학영재 프로그램을 위한 학생 평가도구 개발.건국대학교 석사학위논문.
  9. 전경원 (2000). 한국의 새천년을 위한 영재교육학. 서울: 학문사.
  10. 조석회.김양분 (1994). 일반 학교에서의 효율적인 심화 학습 프로그램 운영 방안 연구, 연구보고 RR94-11. 한국교육개발원.
  11. 중학교 교육과정해설서 (III) 수학, 과학, 기술.가정.
  12. 한국교육개발원 (2009). 제6기 영재교육 담당교원 심화연수 연수교재 TM2008-7-2.
  13. 허미경 (2004). 영재교육 프로그램의 운영 및 효과에 대한 평가. 이화여자대학교 석사학위논문.
  14. 홍은자 (2004). 초등수학 영재 교수-학습 프로그램 분석. 서울교육대학교 석사학위논문.
  15. 황동주 (2005). 수학 영재 판별의 타당도 향상을 위한 수학 창의성 및 문제 해결력 검사 개발과 채점 방법에 관한 연구. 단국대학교 박사학위논문.
  16. 황유진 (2002). 수학 영재교육 프로그램 평가에 대한 연구. 전남대학교 석사학위논문.
  17. 황 일 (1991). 수학 영재교육 방안에 대한 소고. 건대학술지 제35집.
  18. Carolyn M. CalIahan 편저, 황윤세.강현석.정정희.전명남 공역 (2008). 영재교육 프로그램 평가, 서울 : 학지사.