DOI QR코드

DOI QR Code

A Review on Thermal Conductivity of Polymer Composites Using Carbon-Based Fillers : Carbon Nanotubes and Carbon Fibers

  • Hong, Jin-Ho (Department of Chemical Engineering, Inha University) ;
  • Park, Dong-Wha (Department of Chemical Engineering, Inha University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
  • Received : 2010.08.11
  • Accepted : 2010.11.22
  • Published : 2010.12.30

Abstract

Recently, the use of thermal conductive polymeric composites is growing up, where the polymers filled with the thermally conductive fillers effectively dissipate heat generated from electronic components. Therefore, the management of heat is directly related to the lifetime of electronic devices. For the purpose of the improvement of thermal conductivity of composites, fillers with excellent thermally conductive behavior are commonly used. Thermally conductive particles filled polymer composites have advantages due to their easy processibility, low cost, and durability to the corrosion. Especially, carbon-based 1-dimensional nanomaterials such as carbon nanotube (CNT) and carbon nanofiber (CNF) have gained much attention for their excellent thermal conductivity, corrosion resistance and low thermal expansion coefficient than the metals. This paper aims to review the research trends in the improvement of thermal conductivity of the carbon-based materials filled polymer composites.

Keywords

References

  1. Chung, D. D. L. Appl. Therm. Eng. 2001, 21, 1593. https://doi.org/10.1016/S1359-4311(01)00042-4
  2. Tritt, T. M. "Thermal Conductivity: Theory, Properties, and Applications", Springer Science, New York, 2004.
  3. Sanada, K.; Tada Y.; Shindo, Y. Compos. Part A-Appl. S. 2009, 40, 724. https://doi.org/10.1016/j.compositesa.2009.02.024
  4. Prasher, R. Proceedings of the IEEE, 2006, 94, 1571. https://doi.org/10.1109/JPROC.2006.879796
  5. Gwinn, J. P.; Webb, R. L. Microelectron. J. 2003, 34, 215. https://doi.org/10.1016/S0026-2692(02)00191-X
  6. Finan, J. M. Proceedings of Society of Plastic Engineers' Annual Technical Conference, 1999, 1547.
  7. Heiser, J. A.; King, J. A. Polym. Composite 2004, 25, 186. https://doi.org/10.1002/pc.20015
  8. Sim, L. C.; Ramanan, S. R.; Ismail, H.; Seetharamu, K. N.; Goh, T. J. Thermochim. Acta 2005, 430, 155. https://doi.org/10.1016/j.tca.2004.12.024
  9. Zhou, W.; Qi, S.; Tu, C.; Zhao, H.; Wang, C.; Kou, J. J. Appl. Polym. Sci. 2007, 104, 1312. https://doi.org/10.1002/app.25789
  10. Kim, S. H.; Choi, S. R.; Kim, D. J. Heat Trans.-T. ASME 2007, 129, 298. https://doi.org/10.1115/1.2427071
  11. Zhou, W.; Qi, S.; An, Q.; Zhao, H.; Liu, N. Mater. Res. Bull. 2007, 42, 1863. https://doi.org/10.1016/j.materresbull.2006.11.047
  12. Mu, Q.; Feng, S.; Diao, G. Polym. Compos. 2007, 28, 125. https://doi.org/10.1002/pc.20276
  13. Lee, B.; Liu, J. Z.; Sun, B.; Shen, C. Y.; Dai, G. C. Exp. Polym. Lett. 2008, 2, 357. https://doi.org/10.3144/expresspolymlett.2008.42
  14. Lee, B.; Dai, G. J. Mater. Sci. 2008, 44, 4848.
  15. Yu, W.; Xie, H.; Chen, L.; Li, Y. Thermochim. Acta. 2009, 491, 92. https://doi.org/10.1016/j.tca.2009.03.007
  16. Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A. Appl. Phys. Lett. 2001, 79, 2252. https://doi.org/10.1063/1.1408272
  17. Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. Appl. Phys. Lett. 2002, 80, 2767. https://doi.org/10.1063/1.1469696
  18. Xu, B.; Fu, Y. Q.; Ahmad, M.; Luo, J. K.; Huang, W. M.; Kraft, A.; Reuben, R.; Pei, Y. T.; Chend, Z. G.; Th. J.; De Hossond, M. J. Mater. Chem., 2010, 20, 3442. https://doi.org/10.1039/b923238a
  19. Buxton, G. A.; Balazs, A. C. Mol. Simulat. 2004, 30, 249. https://doi.org/10.1080/08927020310001659142
  20. Kuchibhatla, S. V. N. T.; Karakoti, A. S.; Bera, D.; Seal, S. Prog. Mater. Sci. 2007, 52, 699. https://doi.org/10.1016/j.pmatsci.2006.08.001
  21. Xie, X. L.; Mai Y. X.; Zhou S. P. Mater. Sci. Eng. R. 2005, 49, 89. https://doi.org/10.1016/j.mser.2005.04.002
  22. Ramasubramaniam, R.; Chen J.; Liu H. Appl. Phys. Lett. 2003, 83, 2928. https://doi.org/10.1063/1.1616976
  23. Parekh, B. B.; Fanchini, G.; Eda, G.; Chhowalla, M. Appl. Phys. Lett. 2007, 90, 121913. https://doi.org/10.1063/1.2715027
  24. Viswanath, R.; Wakharkar, V.; Watwe, A.; Lebonheur, V. Intel Technol. J. 2000, 4, 1.
  25. Bonnet, P.; Sireude, D.; Garnier, B.; Chauvet, O. Appl. Phys. Lett. 2007, 91, 201910. https://doi.org/10.1063/1.2813625
  26. Lu, C.; Mai, Y. W. J. Mater. Sci. 2008, 43, 6012. https://doi.org/10.1007/s10853-008-2917-2
  27. Xu, Y.; Leong, C. K.; Chung, D. D. L. J. Electro. Mater. 2007, 36, 1181. https://doi.org/10.1007/s11664-007-0188-3
  28. Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Kikkawa, M.; Yodh, A. G. Appl. Phys. Lett. 2005, 87, 161909. https://doi.org/10.1063/1.2103398
  29. Berber, S.; Kwon, Y. K.; Tamánek, D. Phys. Rev. Lett., 2000, 84, 4613. https://doi.org/10.1103/PhysRevLett.84.4613
  30. Yang, D. J.; Wang, S. G.; Zhang, Q.; Sellin, P. J.; Chen, G. Phys. Lett. A, 2004, 329, 207. https://doi.org/10.1016/j.physleta.2004.05.070
  31. Gojny F. H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte K. Polymer 2006, 47, 2036. https://doi.org/10.1016/j.polymer.2006.01.029
  32. Kashiwagi, T.; Grulke, E.; Hildong, J.; Groth, K.; Harris, R.; Butler, K. Polymer 2004, 45, 4227. https://doi.org/10.1016/j.polymer.2004.03.088
  33. Xia H.; Song, M. Soft Matter. 2005, 1, 386. https://doi.org/10.1039/b509038e
  34. Xu, Y.; Ray, G. Compos. Part A-Appl. S. 2006, 37, 114. https://doi.org/10.1016/j.compositesa.2005.04.009
  35. Nan, C. W.; Shi, Z.; Lin. Y. Chem. Phys. Lett. 2003, 375, 666. https://doi.org/10.1016/S0009-2614(03)00956-4
  36. Nan, C. W.; Liu, G.; Lin, Y.; Li, M. Appl. Phys. Lett. 2004, 85, 3549. https://doi.org/10.1063/1.1808874
  37. Hong, J.; Lee, J.; Hong, C. K.; Shim, S. E. Current Appl. Phys. 2010, 10, 359. https://doi.org/10.1016/j.cap.2009.06.028
  38. Hong, J.; Lee, J.; Hong, C. K.; Shim, S. E. J. Therm. Anal. Calorim. 2010, 101, 297. https://doi.org/10.1007/s10973-009-0664-5
  39. Kim, M.; Hong, J.; Lee, J.; Hong, C. K.; Shim, S. E. J. Colloid Interf. Sci. 2008, 322, 321. https://doi.org/10.1016/j.jcis.2008.03.045
  40. Huang, H.; Liu, C.; Wu, Y.; Fan, S. Adv. Mater. 2005, 17, 1652. https://doi.org/10.1002/adma.200500467
  41. Song, P. C.; Liu, C. H.; Fan, S. S. Appl. Phys. Lett. 2006, 88, 153111. https://doi.org/10.1063/1.2194267
  42. Kim, M.; Hong, C. K.; Choe, S.; Shim, S. E. J. Polym. Sci. Part A: Polym. Chem., 2007, 45, 4413. https://doi.org/10.1002/pola.22190
  43. Liu, C. H.; Fan, S. S. Appl. Phys. Lett, 2005, 86, 123106. https://doi.org/10.1063/1.1887839
  44. Yu, A.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Appl. Phys. Lett. 2006, 89, 133102. https://doi.org/10.1063/1.2357580
  45. Hong, W. T.; Tai, N. H. Diam. Relat. Mater. 2008, 17, 1577. https://doi.org/10.1016/j.diamond.2008.03.037
  46. Shen, Z.; Bateman, S.; Wu, D. Y.; McMahon, P.; Dell'Olio, M.; Gotama, J. Compos. Sci. Technol. 2009, 69, 239. https://doi.org/10.1016/j.compscitech.2008.10.017
  47. Edie, D. D. Carbon 1998, 36, 345. https://doi.org/10.1016/S0008-6223(97)00185-1
  48. Chand, S. J. Mater. Sci. 2000, 35, 1303. https://doi.org/10.1023/A:1004780301489
  49. Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. J. Appl. Phys. 1997, 81, 6692. https://doi.org/10.1063/1.365209
  50. Rajaiah, J.; Andrews, G.; Ruckenstein, E.; Gupta, R. K. Chem. Eng. Sci. 1993, 47, 3863.
  51. Lee, G. W.; Lee, J. I.; Lee, S. S.; Park, M.; Kim, J. J. Mater. Sci. 2005, 40, 1259. https://doi.org/10.1007/s10853-005-6947-8
  52. Kuriger R. J.; Alam, M. K. Exp. Heat Trans. 2002, 15, 19. https://doi.org/10.1080/089161502753341843
  53. Ghose, S.; Working, D. C.; Connell, J. W.; Smith Jr., J. G.; Watson, K. A.; Delozier, D. M.; Sun, Y. P.; Lin, Y. High Perform. Polym. 2006, 18, 961. https://doi.org/10.1177/0954008306069133
  54. Kim, Y. A.; Kamio. S.; Tajiri, T.; Hayashi, T.; Song, S. M.; Endo, M.; Terrones, M.; Dresselhaus, M. S. Appl. Phys. Lett. 2007, 90, 093125. https://doi.org/10.1063/1.2710778
  55. Bekyarova, E.; Thostenson, E. T.; Yu, A.; Kim, H.; Gao, J.; Tang, J.; Hahn, H. T.; Chou, T. W.; Itkis, M. E.; Haddon, R. C. Langmuir 2007, 23, 3970. https://doi.org/10.1021/la062743p
  56. Naito, K.; Yang, J. M.; Xu, Y.; Kagawa, Y. Carbon 2010, 48, 1849. https://doi.org/10.1016/j.carbon.2010.01.031

Cited by

  1. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess vol.12, pp.2, 2011, https://doi.org/10.5714/CL.2011.12.2.057
  2. Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.067
  3. Optical Spectroscopy Characterization of Carbon Nanofiber Orientation in Polypropylene Film. A New Approach vol.47, pp.3, 2015, https://doi.org/10.1007/s10692-015-9669-y
  4. Out of Plane Thermal Conductivity of Carbon Fiber Reinforced Composite Filled with Diamond Powder vol.06, pp.02, 2016, https://doi.org/10.4236/ojcm.2016.62005
  5. Graphene–Carbon–Metal Composite Film for a Flexible Heat Sink vol.9, pp.46, 2017, https://doi.org/10.1021/acsami.7b11485
  6. Recent Developments on Epoxy-Based Thermally Conductive Adhesives (TCA): A Review pp.1525-6111, 2017, https://doi.org/10.1080/03602559.2017.1354253
  7. Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A review pp.1530-793X, 2017, https://doi.org/10.1177/0021998317692398
  8. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes vol.36, pp.11, 2014, https://doi.org/10.1002/pc.23104
  9. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-07208-8
  10. Covalent functionalization of multiwalled carbon nanotubes with super-hydrophobic property vol.38, pp.6, 2018, https://doi.org/10.1515/polyeng-2017-0096