DOI QR코드

DOI QR Code

Effect of Interphase Modulus and Nanofiller Agglomeration on the Tensile Modulus of Graphite Nanoplatelets and Carbon Nanotube Reinforced Polypropylene Nanocomposites

  • Karevan, Mehdi (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Pucha, Raghuram V. (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Bhuiyan, Md.A. (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology) ;
  • Kalaitzidou, Kyriaki (G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
  • 투고 : 2010.09.22
  • 심사 : 2010.12.14
  • 발행 : 2010.12.30

초록

This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets ($xGnP^{TM}$) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.

키워드

참고문헌

  1. Moniruzzaman, M.; Winey, K. I. Macromolecules 2006, 39, 5194. https://doi.org/10.1021/ma060733p
  2. Dhakate, S. R.; Sharma, S.; Borah, M.; Mathur, R. B.; Dhami, T. L. Int'l J. Hydrogen Energy 2008, 33, 7146. https://doi.org/10.1016/j.ijhydene.2008.09.004
  3. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Carbon 2007, 45, 1446. https://doi.org/10.1016/j.carbon.2007.03.029
  4. Halpin, J. C.; Kardos, J. L. Polym. Eng. Sci. 1976, 16, 344. https://doi.org/10.1002/pen.760160512
  5. Haggenmueller, R.; Zhou, W.; Fischer, J. E.; Winey, K. I. J. Nanosci. Nanotech. 2003, 3, 105. https://doi.org/10.1166/jnn.2003.173
  6. Zhu, J.; Peng, H. Q.; Rodriguez-Macias, F.; Margrave, J. L.; Khabashesku, V. N.; Imam, A. M.; Lozano, K.; Barrera, E. V. Adv. Funct. Mater. 2004, 14, 643. https://doi.org/10.1002/adfm.200305162
  7. Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Appl. Phys. Lett. 2000, 76, 2868. https://doi.org/10.1063/1.126500
  8. Jin, L.; Bower, C.; Zhou, O. Appl. Phys. Lett. 1998, 73, 1197. https://doi.org/10.1063/1.122125
  9. Zacharia, R.; Ulbricht, H.; Hertel, T. Phys. Rev. B 2004, 69, 155406 https://doi.org/10.1103/PhysRevB.69.155406
  10. Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Appl. Phys. Lett. 1998, 73, 3842. https://doi.org/10.1063/1.122911
  11. Ajayan, P. M.; Schadler, L. S.; Giannaris, C.; Rubio, A. Adv. Mater. 2000, 12, 750. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
  12. Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Compos. Sci. Tech. 2007, 67, 2045. https://doi.org/10.1016/j.compscitech.2006.11.014
  13. Downing, T. D.; Kumar, R.; Cross, W. M.; Kjerengtroen, L.; Kellar, J. J. J.Adhesion Sci. Tech. 2000, 14, 1801. https://doi.org/10.1163/156856100743248
  14. Magonov, S. N.; Reneker, D. H. Ann. Rev. Mater. Sci. 1997, 27, 175. https://doi.org/10.1146/annurev.matsci.27.1.175
  15. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637. https://doi.org/10.1126/science.287.5453.637
  16. Ciprari, D.; Jacob, K.; Tannenbaum, R. Macromolecules 2006, 39, 6565. https://doi.org/10.1021/ma0602270
  17. Halpin, J. C.; Tsai, S. W. "Air Force Technical Report AFML-TR 67-423", 1967.
  18. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. https://doi.org/10.1126/science.1157996
  19. Scarpa, F.; Adhikari, S.; Phani, A. S. Nanotechnology 2009, 20, 06709.
  20. Yasmin, A.; Daniel, I. M. Polymer 2004, 45, 8211. https://doi.org/10.1016/j.polymer.2004.09.054

피인용 문헌

  1. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess vol.12, pp.2, 2011, https://doi.org/10.5714/CL.2011.12.2.057
  2. Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites vol.20, pp.4, 2013, https://doi.org/10.1080/15685543.2013.795752
  3. -acrylonitrile): Characterization and Its Epoxy Toughening Effect vol.32, pp.4, 2013, https://doi.org/10.1002/adv.21366
  4. Hybridization of short glass fiber polypropylene composites with nanosilica and graphite nanoplatelets vol.33, pp.18, 2014, https://doi.org/10.1177/0731684414542668
  5. Understanding the effect of silica nanoparticles and exfoliated graphite nanoplatelets on the crystallization behavior of isotactic polypropylene vol.55, pp.3, 2014, https://doi.org/10.1002/pen.23941
  6. Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites pp.00218995, 2014, https://doi.org/10.1002/app.41682
  7. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview vol.19, 2016, https://doi.org/10.5714/CL.2016.19.001
  8. Effect of Carbon-Based Particles on the Mechanical Behavior of Isotactic Poly(propylene)s vol.301, pp.4, 2016, https://doi.org/10.1002/mame.201500380
  9. Estimation of elastic moduli of particulate-reinforced composites using finite element and modified Halpin–Tsai models vol.38, pp.4, 2016, https://doi.org/10.1007/s40430-015-0429-y
  10. Melt Compounding of Thermoplastic Polyurethanes Incorporating 1D and 2D Carbon Nanofillers vol.56, pp.7, 2017, https://doi.org/10.1080/03602559.2016.1233265
  11. Effect of graphene nanoplatelets structure on the properties of acrylonitrile-butadiene-styrene composites pp.02728397, 2017, https://doi.org/10.1002/pc.24645
  12. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes vol.8, pp.9, 2018, https://doi.org/10.3390/nano8090674
  13. Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications vol.35, pp.6, 2018, https://doi.org/10.1002/ppsc.201700412
  14. Reinforcement Parameter Effect on Properties of Three-Phase Composites pp.1811-8216, 2018, https://doi.org/10.1017/jmech.2018.12
  15. Micromechanical Constitutive Equations for the Effective Thermoelastic Properties of Carbon Nanotube-Reinforced Composites pp.2191-4281, 2018, https://doi.org/10.1007/s13369-018-3271-6
  16. Micromechanics analysis for thermal expansion coefficients of three-phase particle composites pp.1432-0681, 2019, https://doi.org/10.1007/s00419-019-01533-0