DOI QR코드

DOI QR Code

Molecular Dynamics Simulations of Graphite-Vinylester Nanocomposites and Their Constituents

  • Alkhateb, H. (Nano Infrastructure Group, The University of Mississippi, University) ;
  • Al-Ostaz, A. (Nano Infrastructure Group, The University of Mississippi, University) ;
  • Cheng, A.H.D. (Nano Infrastructure Group, The University of Mississippi, University)
  • Received : 2010.08.20
  • Accepted : 2010.12.14
  • Published : 2010.12.30

Abstract

The effects of geometrical parameters on mechanical properties of graphite-vinylester nanocomposites and their constituents (matrix, reinforcement and interface) are studied using molecular dynamics (MD) simulations. Young's modulii of 1.3 TPa and 1.16 TPa are obtained for graphene layer and for graphite layers respectively. Interfacial shear strength resulting from the molecular dynamic (MD) simulations for graphene-vinylester is found to be 256 MPa compared to 126 MPa for graphitevinylester. MD simulations prove that exfoliation improves mechanical properties of graphite nanoplatelet vinylester nanocomposites. Also, the effects of bromination on the mechanical properties of vinylester and interfacial strength of the graphene.brominated vinylester nanocomposites are investigated. MD simulation revealed that, although there is minimal effect of bromination on mechanical properties of pure vinylester, bromination tends to enhance interfacial shear strength between graphite-brominated vinylester/graphene-brominated vinylester in a considerable magnitude.

Keywords

References

  1. Varley, R. J.; Groth, A. M.; Leong, K. H. Compos. Sci. Tech. 2007, 68, 2882.
  2. Meyer, J. C.; Geim, A. K.; Kastnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60. https://doi.org/10.1038/nature05545
  3. Figiel, L.; Buckley, C. P. Comput. Mater. Sci. 2008, inpress.
  4. Valavala, P. K.; Odegard, G. M. IUTAM Symp. Modelling Nanomaterials and Nanosystems: Proc. IUTAM Symp., Aalborg, Denmark, 2008, 19.
  5. Zeng, Q. H.; Yu, A. B.; Lu, G. Q. Progr. Polym. Sci. 2007,33, 191.
  6. Harkin- Jones, E.; Figiel, L.; Spencer, P.; Abu-Zurayk, R.; Al-Shabib, W.; Chan, V.; Rajeev, R.; Soon, K.; Buckley, P.; Sweeney, J.; Menary, G.; Armstrong, C.; Assender, H.; Coates, P.; Dunne, F.; McNally, T.; Martin, P. Plastics, Rubber & Composites 2008, 37, 113. https://doi.org/10.1179/174328908X83410
  7. Lan, T. T.; Kaviratna, P. D.; Pinnavaia, T. J. J. Chem. Mater. 1995, 7, 2144. https://doi.org/10.1021/cm00059a023
  8. Lan, T. T.; Pinnavaia, T. J. Proc. Mat. Res. Soc. Symp. 1996, 435.
  9. Vaia, R. A.; Price, G.; Ruth, P. N.; Nguyen, H. T.; Lichtenhan, J. Appl. Clay Sci. 1999, 15, 67. https://doi.org/10.1016/S0169-1317(99)00013-7
  10. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 11. https://doi.org/10.1016/S0169-1317(99)00017-4
  11. Mouras, S.; Hamm A.; Djurado, D.; Cousseins, J. C. Revue de Chimie Minerale 1987, 24, 572.
  12. Novoselov, A. K.; Geim, A. K.; Morsozov, S. V.; Jaing, D.; Zhang, Y.; Dubonus, S. V.; Grigrieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  13. Novoselov, K. S.; Jaing, D.; Booth, T. J.; Khotkevich, V. V.; Morzov, S. V.; Geim, A. K. PNAS 2005, 102, 10451. https://doi.org/10.1073/pnas.0502848102
  14. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. https://doi.org/10.1126/science.1157996
  15. http://en.wikipedia.org/wiki/Graphene.
  16. Karger-Kocsis, J., Gryshchuk, O., Schmitt, S. J. Mater. Sci. 2003, 38, 413. https://doi.org/10.1023/A:1021855228253
  17. Derkane $Momentum^{TM}$ 640-900. Epoxy Vinyl Ester Resin, 2004.
  18. Gou, J.; Minaie, B.; Wang, B.; Liang, Z.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225. https://doi.org/10.1016/j.commatsci.2004.03.002
  19. Wagner, H. D.; Vaia, R. A. Materials Today 2004, 7, 38, https://doi.org/10.1016/S1369-7021(04)00507-3
  20. Liao, K; Li, S. Appl. Phys. Lett. 2001, 79, 4225. https://doi.org/10.1063/1.1428116
  21. Xiao, M.; Sun, L.; Liu, J.; Li., Y.; Gong, K. Polymer 2001, 43, 2245.
  22. Leach, R. A. "Molecular Modeling Principles and Application", Pearson Education, EMA, 2001, Chapter 1.
  23. MS Modeling 4.0 Online Help Manual, Accelrys Inc., 2005.
  24. Sun, H. J. Phys. Chem. B 1998, 102, 7338. https://doi.org/10.1021/jp980939v
  25. Al-Ostaz, A.; Pal, G. J. Mater. Sci. 2008, 43, 164. https://doi.org/10.1007/s10853-007-2132-6

Cited by

  1. Correlating Micromorphology and Nanomorphology to High Strain Rate Performance of Nanoparticle Reinforced Polymeric Materials vol.2, pp.4, 2012, https://doi.org/10.1061/(ASCE)NM.2153-5477.0000045
  2. Mechanical and Thermal Properties of Thermoset-Graphene Nanocomposites vol.301, pp.3, 2016, https://doi.org/10.1002/mame.201500335
  3. Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene vol.71, pp.4, 2016, https://doi.org/10.1515/zna-2015-0444
  4. Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review pp.17590876, 2018, https://doi.org/10.1002/wcms.1346