DOI QR코드

DOI QR Code

Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites

  • Received : 2010.08.17
  • Accepted : 2010.12.08
  • Published : 2010.12.30

Abstract

In this work, the effect of glycidyl methacrylate grafted multi-walled carbon nanotubes (GMA-MWCNTs) on the viscoelastic behaviors of polypropylene (PP) based nanocomposites was studied. The GMA-MWCNTs/PP was prepared using a bravender at $200^{\circ}C$ by melt mixing as a function of GMA-MWCNT content. The viscoelastic behaviors of GMA-MWCNTs/PP nanocomposites were measured by a rheometer. It was found that the GMA-MWCNTs were homogeneously dispersed in the PP matrix. The GMA-MWCNTs/PP nanocomposites showed higher storage modulus, loss modulus, and shear viscosity compared to pure PP nanocomposites and the maximum value was shown at 2.0 wt% GMA-MWCNTs loading. These results were probably attributed to the strong interfacial interaction between the GMA-MWCNT and the PP matrix.

Keywords

References

  1. Dai, L. M.; Mau, A. W. H. Adv. Mater. 2001, 13, 899. https://doi.org/10.1002/1521-4095(200107)13:12/13<899::AID-ADMA899>3.0.CO;2-G
  2. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787. https://doi.org/10.1126/science.1060928
  3. Sun, Y. P.; Fu, K. F.; Lin, Y.; Huang, W. J. Acc. Chem. Res. 2002, 35, 1096. https://doi.org/10.1021/ar010160v
  4. Dai, H. J. Surf. Sci. 2002, 500, 218. https://doi.org/10.1016/S0039-6028(01)01558-8
  5. Modi, A.; Koratkar, N.; Lass, E.; Wei, B. Q.; Ajayan, P. M. Nature 2003, 424, 171. https://doi.org/10.1038/nature01777
  6. Ghosh, S.; Sood, A. K.; Kumar, N. Science 2003, 299, 1042. https://doi.org/10.1126/science.1079080
  7. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49. https://doi.org/10.1038/29954
  8. Postma, H. W. C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Science 2001, 293, 76. https://doi.org/10.1126/science.1061797
  9. Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; Mceuen, P.; Lundstrom, M.; Dai, H. J. Nat. Mater. 2002, 1, 241. https://doi.org/10.1038/nmat769
  10. Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Science 2001, 294, 1317. https://doi.org/10.1126/science.1065824
  11. Sung, Y. T.; Han, M. S.; Song, K. H.; Jung, J. W.; Lee, H. S.; Kum, C. K.; Joo, J.; Kim, W. N. Polymer 2006, 47, 4434. https://doi.org/10.1016/j.polymer.2006.04.008
  12. Fischer, J. E.; Dai, H.; Thess, A.; Lee, R.; Hanjani, N. M.; Dehaas, D. L. Phys. Rev. B. 1997, 55, 4921. https://doi.org/10.1103/PhysRevB.55.R4921
  13. Zdenko, S.; Dimitrios, T.; Konstantinos, P.; Costas, G. Prog. Polym. Sci. 2010, 35, 357. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  14. Mohammed, H. A.; Uttandaramen, S. Carbon 2009, 47, 2. https://doi.org/10.1016/j.carbon.2008.09.039
  15. Hou, P. X.; Liu, C.; Cheng, H. M. Carbon 2008, 46, 2003. https://doi.org/10.1016/j.carbon.2008.09.009
  16. Zheng, Y.; Zhang, J.; Xidadong, Z.; Chen, W.; Wang, R. J. Appl. Polym. Sci. 2009, 112, 1755. https://doi.org/10.1002/app.29303
  17. Meyyappan, M. "Carbon Nanotubes Science and Applications", CRC press, Boca Raton, 2005, ???.
  18. Park, S. J. "Interfacial Forces and Fields: Theory and Application", ed. J. P. Hsu, Marcel Dekker, New York, 1999, Chap 9.
  19. Lee, Y. S.; Im, J. S.; Yun, S. M.; Nho, Y. C.; Kang, P. H.; Jin, H. K. Carbon Lett. 2009, 10, 314. https://doi.org/10.5714/CL.2009.10.4.314
  20. Kim, K. S.; Choi, K. E.; Park, S. J. Carbon Lett. 2009, 10, 335 https://doi.org/10.5714/CL.2009.10.4.335
  21. Lee, S. H.; Kim, M. W.; Kim, S. H.; Youn, J. R. Europ. Polym. J. 2008, 44, 1620. https://doi.org/10.1016/j.eurpolymj.2008.03.017
  22. Seo, M. K.; Lee, J. R.; Park, S. J. J. Mater. Sci. Eng. A. 2005, 404, 79. https://doi.org/10.1016/j.msea.2005.05.065

Cited by

  1. A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess vol.12, pp.2, 2011, https://doi.org/10.5714/CL.2011.12.2.057
  2. Electrical, thermal, and rheological properties of carbon black and carbon nanotube dual filler-incorporated poly(dimethylsiloxane) nanocomposites vol.20, pp.5, 2012, https://doi.org/10.1007/s13233-012-0066-6
  3. Effect of polystyrene-grafted multi-walled carbon nanotubes on the viscoelastic behavior and electrical properties of polypropylene-based nanocomposites vol.38, pp.9, 2012, https://doi.org/10.1007/s11164-012-0531-z
  4. Effect of Multi Wall Carbon Nanotube Content on The Electrical and Rheological Properties of Polypropylene-based Nanocomposites vol.78, pp.2261-236X, 2016, https://doi.org/10.1051/matecconf/20167801092