Experimental Parameter Identification and Performance Analysis of a Fish Robot with Ostraciiform Swimming Mode using Rigid Caudal Fins

고체형 꼬리 지느러미로 오스트라키폼 유영을 하는 물고기 로봇의 패러미터 식별 및 성능 분석

  • ;
  • 이기건 (Department Of Aerospace Information Engineering, Konkuk University) ;
  • 김병하 (Department Of Aerospace Information Engineering, Konkuk University) ;
  • 최정민 (Artificial Muscle Research Center, Konkuk University) ;
  • 강태삼 (Department of Aerospace Information Engineering, Konkuk University)
  • Received : 2010.04.26
  • Accepted : 2010.06.11
  • Published : 2010.08.31

Abstract

The ostraciiform swimming mode allows the simplest mechanical design and control for underwater vehicle swimming. Propulsion is achieved via the flapping of caudal fin without the body undulatory motion. In this research, the propulsion of underwater vehicles by ostraciiform swimming mode is explored experimentally using an ostraciiform fish robot and some rigid caudal fins. The effects of caudal fin flapping frequency and amplitude on the cruising performance are studied in particular. A theoretical model of propulsion using rigid caudal fin is proposed and identified with the experimental data. An experimental method to obtain the drag coefficient and the added mass of the fish robot is also proposed.

Keywords

References

  1. R. Bandyopadhyay, "Trends in Biorobotic Autonomous Undersea Vehicles", IEEE Journal of Oceanic Engineering, Vol.29, pp.1-32, 2004. https://doi.org/10.1109/JOE.2003.823311
  2. B.G.M. Jamieson, Fish Evolution and Systematics: Evidence from Spermatozoa, Cambridge University Press, Cambridge, 1991.
  3. M. Sfakiotakis, D. M. Lane and J. C. Davies, "Review of Fish Swimming Modes for Aquatic Locomotion", IEEE Journal of Oceanic Engineering, Vol.24, No.2, pp.237-252, 1999. https://doi.org/10.1109/48.757275
  4. P.W. Webb, "Swimming", in The Physiology of Fishes 2nd Edition, D.H. Evans Ed., pp.3-24, CRC Press, Boca Raton, Florida, 1998.
  5. P.W. Webb, "The Biology of Fish Swimming", in Mechanics and Physiology of Animal Swimming, L. Maddock, Q. Bone, and J. M. V. Rayner Eds, pp.45-62, Cambridge University Press, Cambridge, UK.
  6. G.S. Helfman, B.B. Collette and D.E. Facey, "The Diversity of Fishes". Blackwell Science, Inc., Malden, Massachusetts, 1997.
  7. R.W. Blake, Fish Locomotion, Cambridge University Press, 1983.
  8. J.H. Ferziger and M. Peric, Computational methods for fluid dynamics, Springer, 1999.
  9. C. E. Brennen, "A Review of Added Mass and Fluid Inertial Forces", Naval Civil Engineering Laboratory, CR82.010, January 1982.
  10. G. S. Triantafyllou, M. S. Triantafyllou and M. A. Grosenbauch, "Optimal thrust development in oscillating foils with application to fish propulsion", Journal of Fluids Structure., Vol.7, pp.205-224, 1993. https://doi.org/10.1006/jfls.1993.1012
  11. J.Gray, "Studies in Animal Locomotion VI. The Propulsive Powers of the Dolphin", Journal Expl. Biol., Vol.13, pp.192-199, 1936.
  12. D. Bilo and W. Nachtigall, "A Simple Method to Determine Drag Coefficients in Aquatic Animals", J. Exp, Biol. Vol.87, pp.357-359, 1980.
  13. http://www.engineeringtoolbox.com/drag-coefficientd_627.html.
  14. T. J. Pedley, and S. J. Hill, "Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics", The Journal of Experimental Biology, Vol.202, pp.3431-3438, 1999.
  15. Junzhi Yu, Shuo Wang and Min Tan, "A simplified propulsive model of bio-mimetic robot fish and its realization," Cambridge University Press, Robotica, Vol.23, pp.101-107, 2005.
  16. R Mason, J Burdick, "Construction and modelling of a carangiform robotic fish," Experimental Robotics VI, Springer, 235-242, 2000.
  17. K.H. Low, "Modelling and parametric study of modular undulating fin rays for fish robots," Mechanism and Machine Theory, Vol.44, pp.615-632, 2009. https://doi.org/10.1016/j.mechmachtheory.2008.11.009
  18. J. Edward Colgate, Kevin M. Lynch, "Mechanics and control of swimming: a review", IEEE Journal of Oceanic Engineering, Vol.29, pp.660-673, 2004. https://doi.org/10.1109/JOE.2004.833208
  19. Q. S. Nguyen, S. Heo, H. C. Park, and D. Byun, "Performance evaluation of an improved fish robot actuated by piezoceramic actuators", Smart Materials and Structures, Vol.19, 2010.
  20. B. Kim, D. H. Kim, J. Jung, J. O. Park, "A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators", Smart Materials and Structures, Vol.14, pp.1579-1585, 2005. https://doi.org/10.1088/0964-1726/14/6/051
  21. J. W. Paquette, K. J. Kim, "Ionomeric electroactive polymer artificial muscle for naval applications", IEEE Journal of Oceanic Engineering, Vol.29, pp.729-737, 2004. https://doi.org/10.1109/JOE.2004.833132
  22. M. Hur, T. Kang, W. L. Chan, and J. M. Choi, "$H_{\infty}$ controller design of an ostraciiform swimming fish robot," Indian Journal of Marine Sciences, Vol.38, pp.302-307, September 2009.
  23. http://www.solarnavigator.net/propellers.htm
  24. F. E. Fish, "Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops Truncatus)," Journal of Experimental Biology, Vol.185, pp.179-193, 1993.
  25. P. W. WEBB, Hydrodynamics and energetics of fish propulsion, Fisheris Research Board of Canada, Bulletin 190, pp.1-159, 1975.
  26. G. T. Yates, "Hydrodynamics of body and caudal fin propulsion," In Fish Biomechanics (ed. P. W. Webb and D. Weihs), pp.177-213. New York: Praeger, 1983.
  27. F. E. Fish, S. Innes, and K. Ronald, "Kinematics and estimated thrust production of swimming harp and ringed seals," J. exp. Biol. 137, pp.157-173, 1988.