(U-Th)/He Dating on Martian Meteorites: Reviews and Perspectives

화성운석에 대한(U-Th)/He 연령 측정: 기존 연구 및 전망

  • Min, Kyoung-Won (Department of Geological Sciences, University of Florida) ;
  • Lee, Seung-Ryeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 민경원 (미국 플로리다대학 지구과학과) ;
  • 이승렬 (한국지질자원연구원 국토지질연구본부)
  • Received : 2010.10.11
  • Accepted : 2010.11.23
  • Published : 2010.12.31

Abstract

The primary utilization of recently improved (U-Th)/He thermochronometry is to reveal the low-T thermal histories of shallow crustal sections or transient episodes (such as wildfires or meteorite impacts) because of the high sensitivity of He diffusion to temperature in host minerals. In this contribution, we present reviews and perspectives regarding how this method can be used to characterize the ejection-related shock metamorphism of Martian meteorites. The temperature conditions of shock metamorphism can be constrained through shock recovery experiments, paleomagnetism, and $^{40}Ar/^{39}Ar$ and (U-Th)/He dating. The most reliable constraints can be deduced when these independent approaches are combined. However, the thermal history of the ALH84001 Martian meteorite has been under serious debate because the different methods have yielded contrasting results. Recent work has shown how single-grain (U-Th)/He and $^{40}Ar/^{39}Ar$ dating, two noble-gas based thermochronometries with different T sensitivities, can be used to resolve this issue, providing a good example for future research on other meteorites.

최근 많은 발전을 이룬 (U-Th)/He 온도-연령 측정법은 광물내의 빠른 He 확산 특성을 이용해 지각 천부의 열역사 혹은 매우 짧은 열적 교란 등을 규명하는데 널리 쓰이고 있다. 이번 논평에서는 이 방법이 어떻게 화성운석의 열역사, 특히 화성(Mars)에서 방출시의 열적교란을 규명하는데 이용될수 있는지에 대한 기존 연구 및 전망에 대해 기술하였다. 모든 화성운석은 화성에서 방출될 당시 충격변성작용을 겪은 것으로 알려져 있는데, 이러한 작용의 온도조건을 규명하기 위해 충격실험을 통한 암석 조직 비교, 고지자기학적 연구, $^{40}Ar/^{39}Ar$ 및 (U-Th)/He 온도-연령측정법 등이 이용되었다. 각각의 방법은 장단점이 있으며 열역사를 밝히는데 단편적인 정보만을 제공하지만, 이러한 다양한 방법들이 동시에 적용되었을때 보다 신빙성있는 열역사를 알아낼 수 있다. ALH84001 화성운석의 경우 화성에서 방출될 당시의 조건에 대해 논란이 많은데 이는 위에 언급한 방법들로부터 서로 상반된 결론이 도출되었기 때문이다. 최근 단입자 (U-Th)/He 및 $^{40}Ar/^{39}Ar$ 결과를 동시에 만족하는 열역사를 규명한 연구가 ALH84001 화성운석에 대해 이루어 졌는데, 이는 앞으로의 운석 연구에 좋은 방법론을 제시할 수 있으리라 본다.

Keywords

References

  1. NASA Compendium, http://www-curator.jsc.nasa.gov/antmet/mmc/.
  2. Aciego, S., Kennedy, B.M., DePaolo, D.J., Christensena, J. N. and Hutcheon, I., 2003, U-Th/He age of phenocrystic garnet from the 79 AD eruption of Mt. Vesuvius. Earth and Planetary Science Letters, 216, 209-219. https://doi.org/10.1016/S0012-821X(03)00478-3
  3. Ahrens, T.J., Patersen, C.F. and Rosenberg, J.T., 1969, Shock compression of feldspars. Journal of Geophysical Research, 74, 2727-2746. https://doi.org/10.1029/JB074i010p02727
  4. Arrol, W.J., Jacobi, R.B. and Paneth, F.A., 1942, Meteorites and the age of the solar system. Nature, 149, 235-238. https://doi.org/10.1038/149235a0
  5. Artemieva, N. and Ivanov, B.A., 2004, Launch of Martian meteorites in oblique impacts. Icarus, 171, 84-101. https://doi.org/10.1016/j.icarus.2004.05.003
  6. Ash, R.D., Knott, S.F. and Turnet, G., 1996, A 4-Gyr shock age for a Martian meteorite and implications for the cratering history of Mars. Nature, 380, 57-59. https://doi.org/10.1038/380057a0
  7. Barrat, J.A., Gillet, P., Sautter, V., Jambon, A., Javoy, M., Gopel, C., Lesourd, M., Keller, F. and Petit, E., 2002, Petrology and chemistry of the basaltic shergottite North West Africa 480. Meteoritics and Planetary Science, 37, 487-499. https://doi.org/10.1111/j.1945-5100.2002.tb00835.x
  8. Bauer, C.A., 1947, Production of helium in meteorites by cosmic radiation. Physical Review, 72, 354-355. https://doi.org/10.1103/PhysRev.72.354
  9. Becker, R.H. and Pepin, R.O., 1984, The case for a martian origin of the shergottites: Nitrogen and noble gases in EETA79001. Earth and Planetary Science Letters, 69, 225-242. https://doi.org/10.1016/0012-821X(84)90183-3
  10. Bogard, D.D., Horz, F. and Johnson, P., 1986, Shockimplanted noble gases: An experimental study with implications for the origin of Martian gases in shergottite meteorites. Journal of Geophysical Research, 91, E99-E114. https://doi.org/10.1029/JB091iB13p00E99
  11. Bogard, D.D., 1995, Impact ages of meteorites: A synthesis. Meteoritics 30, 244-268. https://doi.org/10.1111/j.1945-5100.1995.tb01124.x
  12. Bogard, D.D., 2009, K-Ar dating of rocks on Mars: Requirements from Martian meteorite analyses and isochron modeling. Meteoritics and Planetary Science, 44, 3-14. https://doi.org/10.1111/j.1945-5100.2009.tb00713.x
  13. Bogard, D.D. and Johnson, P., 1983, Martian ages in an Antarctic meteorite. Science, 221, 651-654. https://doi.org/10.1126/science.221.4611.651
  14. Bogard, D.D. and Park, J., 2008, $^{39}Ar-^{40}Ar$ dating of the Zagami martian shergottite and implications from magma origin of excess $^{40}Ar$. Meteoritics and Planetary Science, 43, 1113-1126. https://doi.org/10.1111/j.1945-5100.2008.tb01116.x
  15. Bogard, D.D., Park, J. and Garrison, D., 2009, $^{39}Ar-^{40}Ar$ "ages" and origin of escess $^{40}Ar$ in Martian shergottites. Meteoritics and Planetary Science, 44, 905-923. https://doi.org/10.1111/j.1945-5100.2009.tb00777.x
  16. Boyce, J.W., Hodges, K.V., Olszewski, W.J., Jercinovic, M.J., Carpenter, B.D. and Reiners, P.W., 2006, Laser microprobe (U-Th)/He geochronology. Geochimica et Cosmochimica Acta, 70, 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019
  17. Bridges, J.C., Catling, D.C., Saxton, J.M., Swindle, T.D., Lyon, I.C. and Grady, M.M., 2001, Alteration assemblages in Martian meteorites: Implications for near-surface processes. Space Science Reviews, 96, 365-392. https://doi.org/10.1023/A:1011965826553
  18. Cassata, W.S., Shuster, D.L., Renne, P.R., and Weiss, B.P., 2010. Evidence for shock heating and constraints on Martian surface temperatures revealed by $^{40}Ar/^{39}Ar$thermochronometry of Martian meteorites. Geochimica et Cosmochimica Acta 74, 6900-6920. https://doi.org/10.1016/j.gca.2010.08.027
  19. Clayton, R.N. and Mayeda, T.K., 1996, Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 1999-2017. https://doi.org/10.1016/0016-7037(96)00074-9
  20. Ehlers, T.A. and Farley, K.A., 2003, Apatite (U-Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206, 1-14. https://doi.org/10.1016/S0012-821X(02)01069-5
  21. Farley, K.A., 2000, Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. Journal of Geophysical Research, 105, 2903-2914. https://doi.org/10.1029/1999JB900348
  22. Farley, K.A., Wolf, R.A. and Silver, L.T., 1996, The effects of long alpha-stopping distances on (U-Th)/He dates. Geochimica et Cosmochimica Acta, 60, 4223-4229. https://doi.org/10.1016/S0016-7037(96)00193-7
  23. Fritz, J., Artemieva, N. and Greshake, A., 2005, Ejection of Martian meteorites. Meteoritics and Planetary Science, 40, 1393-1411. https://doi.org/10.1111/j.1945-5100.2005.tb00409.x
  24. Gnos, E., Hofmann, B., Franchi, I.A., Al-Kathiri, A., Hauser, M. and Moser, L., 2002, Sayh al Uhaymir 094: A new martian meteorite from the Oman desert. Meteoritics and Planetary Science, 37, 835-854. https://doi.org/10.1111/j.1945-5100.2002.tb00859.x
  25. Greenwood, J.P. and McSween Jr., H.Y., 2001, Petrogenesis of Allan Hills 84001: constraints from impact melted feldspathic and silica glasses. Meteoritics and Planetary Science, 36, 43-61. https://doi.org/10.1111/j.1945-5100.2001.tb01809.x
  26. Greshake, A., Fritz, J. and Stoffler, D., 2004, Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459 - Evidence for a two-stage cooling and a single-stage ejection history. Geochimica et Cosmochimica Acta, 68, 2359-2377. https://doi.org/10.1016/j.gca.2003.11.022
  27. Harper Jr, C.L., Nyquist, L.E., Bansal, B., Wiesmann, H. and Shih, C.-Y., 1995, Rapid accretion and early differentiation of Mars indicated by $^{142}Nd/^{144}Nd$ in SNC meteorites. Science, 267, 213-217. https://doi.org/10.1126/science.7809625
  28. Harvey, R.P., McCoy, T.J. and Leshin, L.A., 1996, Shergottite QUE 94201: Texture, mineral composition, and comparison with other basaltic shergottites. Lunar and Planetary Science, XXVII, 497-498.
  29. Horneck, G., Stoffler, D., Eschweiler, U. and Hornemann, U., 2001, Bacterial spores survive simulated meteorite impact. Icarus, 149, 285-290. https://doi.org/10.1006/icar.2000.6543
  30. Jagoutz, E., Sorowka, A., Vogel, J.D. and Wanke, H., 1994, ALH84001: Alien or Progenitor of the SNC Family? Meteoritics, 29, 478-479.
  31. Kirschvink, J.L., Maine, A.T. and Vali, H., 1997, Paleomagnetic evidence of a low-temperature origin of carbonate in the martian meteorite ALH84001. Science, 275, 1629-1633. https://doi.org/10.1126/science.275.5306.1629
  32. Lodders, K., 1998. A survey of SNC meteorite whole-rock compositions. Meteoritics and Planetary Science 33, A183-A190. https://doi.org/10.1111/j.1945-5100.1998.tb01331.x
  33. Mathew, K.J. and Marti, K., 2001, Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. Journal of Geophysical Research, 106, 1401-1422. https://doi.org/10.1029/2000JE001255
  34. McCoy, T.J., Taylor, G.J. and Keil, K., 1992, Zagami - Product of a two-stage magmatic history. Geochimica et Cosmochimica Acta, 56, 3571-3582. https://doi.org/10.1016/0016-7037(92)90400-D
  35. McCoy, T.J., Keil, K. and Taylor, G.J., 1993. The dregs of crystallization in Zagami. Lunar and Planetary Science XXIV, 947-948.
  36. McKay, D.S., Gibson Jr. E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. and Zare, R.N., 1996, Search for past like on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science, 273, 924-930. https://doi.org/10.1126/science.273.5277.924
  37. McSween, H.Y., 1985, SNC meteorites - Clues to Martian petrologic evolution? Reviews of Geophysics, 23, 391-416. https://doi.org/10.1029/RG023i004p00391
  38. McSween, H.Y. and Eisenhour, D.D., 1996, QUE94201, A Noncumulate Shergottite? Lunar and Planetary Science, XXVII, 853-854.
  39. McSween, H.Y. and Jarosewich, E., 1983, Petrogenesis of the Elephant Moraine A79001 meteorite Multiple magma pulses on the shergottite parent body. Geochimica et Cosmochimica Acta, 47, 1501-1513. https://doi.org/10.1016/0016-7037(83)90309-5
  40. McSween, H.Y. and Treiman, A.H., 1998, Martian meteorites. In: Papike, J.J. (Ed.), Planetary Materials: Reviews in Mineralogy and Geochemistry(ed. J. J. Papike), Mineralogical Society of America, v. 36, Chapter 6.
  41. Melosh, H.J., 1984, Impact ejection, spallation, and the origin of meteorites. Icarus, 59, 234-260. https://doi.org/10.1016/0019-1035(84)90026-5
  42. Melosh, H.J., 1985, Ejection of rock fragments from planetary bodies. Geology, 13, 144-148. https://doi.org/10.1130/0091-7613(1985)13<144:EORFFP>2.0.CO;2
  43. Melosh, H.J., 1988, The rocky road to panspermia Nature, 332, 687-688. https://doi.org/10.1038/332687a0
  44. Melosh, H.J., 1993, Blasting rocks off planets. Nature, 363, 498-499. https://doi.org/10.1038/363498a0
  45. Mikouchi, T., Miyamoto, M. and McKay, G.A., 1996, Mineralogy and Petrology of New Antarctic Shergottite QUE94201: A Coarse-Grained Basalt With Unusual Pyroxene Zoning. Lunar and Planetary Science, 27, 879.
  46. Mikouchi, T. and Miyamoto, M., 2001. Dhofar 019 shergottite: Mineralogy and petrology of a new member of the basaltic Martian meteorites. Lunar and Planetary Science XXXII, 1644.
  47. Mikouchi, T., Miyamoto, M. and McKay, G.A., 2001, Mineralogy and petrology of the Dar al Gani 476 martian meteorite: Implications for its cooling history and relationship to other shergottites. Meteoritics and Planetary Science, 36, 531-548. https://doi.org/10.1111/j.1945-5100.2001.tb01895.x
  48. Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindergren, L., Melosh, J., Rickman, H., Valtonen, M. and Zheng, J.Q., 2000, Natural transfer of viable microbes in space. Icarus, 145, 391-427. https://doi.org/10.1006/icar.1999.6317
  49. Min, K., 2005, Low-temperature thermochronometry of meteorites. In Low-Temperature Thermochronology: Reviews in Mineralogy and Geochemistry (eds. P. W. Reiners and T.A. Ehlers), Mineralogical Society of America and Geochemical Society, v. 58, Chapter 21, 567-588.
  50. Min, K., Farley, K.A., Renne, P.R. and Marti, K., 2003, Single grain (U-Th)/He ages from phosphates in Acapulco meteorite and implications for thermal history. Earth and Planetary Science Letters, 209, 323-336. https://doi.org/10.1016/S0012-821X(03)00080-3
  51. Min, K., Reiners, P.W., Wolff, J.A., Mundil, R. and Winters, R.L., 2006. (U-Th)/He dating of volcanic phenocrysts with high-U-Th inclusions, Jemez Volcanic Field, New Mexico. Chemical Geology, 227, 223-235. https://doi.org/10.1016/j.chemgeo.2005.10.006
  52. Min, K. and Reiners, P.W., 2007, High-temperature Mars-to-Earth transfer of meteorite ALH84001. Earth and Planetary Science Letters, 260, 72-85. https://doi.org/10.1016/j.epsl.2007.05.019
  53. Min, K., Reiners, P.W., Nicolescu, S. and Greenwood, J.P., 2004, Age and temperature of shock metamorphism of Martian meteorite Los Angeles from (U-Th)/He thermochronometry. Geology, 32, 677-680. https://doi.org/10.1130/G20510.1
  54. Min, K., Reiners, P.W. and Shuster, D., 2010, Single-grain (U-Th)/He ages of phosphates from St. Severin chondrite. AGU Fall Meeting, Abstract, P14C-04.
  55. Mitchell, S.G. and Reiners, P. W., 2003, Influence of Wildfires on Apatite and Zircon (U-Th)/He Ages. Geology, 31, 1025-1028. https://doi.org/10.1130/G19758.1
  56. Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stoffler, D. and Eugster, O., 2001, Ages and geologic histories of Martian meteorites. Space Science Review, 96, 105-164. https://doi.org/10.1023/A:1011993105172
  57. Ostertag, R., 1983, Shock experiments on feldspar crystals. Journal of Geophysical Research, 88, B364-376. https://doi.org/10.1029/JB088iS01p0B364
  58. Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W. and Lafleur, A.L., 1977, The Composition of the Atmosphere at the Surface of Mars. Journal of Geophysical Research, 82, 4635-4639. https://doi.org/10.1029/JS082i028p04635
  59. Paneth, F.A., Urry, W.D. and Koeck, W., 1930, The age of iron meteorites. Nature, 125, 490-491.
  60. Pepin, R.O., 1985, Evidence of Martian origins. Nature, 317, 473-475. https://doi.org/10.1038/317473a0
  61. Reimold, W.U. and Stoffler, D., 1978, Experimental shock metamorphism of dunite. Proceedings of Lunar and Planetary Science Conference, 9, 2805-2824.
  62. Reiners, P.W., 2002, (U-Th)/He chronometry experiences a renaissance. Eos, 83, 21-27.
  63. Reiners, P.W. and Farley, K.A., 2001. Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming Earth and Planetary Science Letters, 188, 413-420. https://doi.org/10.1016/S0012-821X(01)00341-7
  64. Reiners, P.W. and Nicolescu, S., 2006, Measurement of parent nuclides for (U-Th)/He chronometry by solution sector ICP-MSARHDL Report. University of Arizona, page.
  65. Rubin, A.E., Warren, P.H., Greenwood, J.P., Verish, R.S., Leshin, L.A., Hervig, R.L., Clayton, R.N. and Mayeda, T.K., 2000, Los Angeles: The most differentiated basaltic martian meteorite. Geology, 28, 1011-1014. https://doi.org/10.1130/0091-7613(2000)28<1011:LATMDB>2.0.CO;2
  66. Schmitt, R.T., 2000,. Shock experiments with the H6 chondrite Kernouve. Meteoritics and Planetary Science, 35, 545-560. https://doi.org/10.1111/j.1945-5100.2000.tb01435.x
  67. Schultz, L. and Franke, L., 2004, Helium, neon, and argon in meteorites: A data collection. Meteoritics and Planetary Science, 39, 1889-1890. https://doi.org/10.1111/j.1945-5100.2004.tb00083.x
  68. Schwandt, C.S., 2001, The magma composition of EETA 79001A: The first recount. Lunar and Planetary Science XXXII, 1913.
  69. Schwenzer, S.P., Fritz, J., Greshake, A., Herrmann, S., Jochum, K.P., Ott, U., Stoffler, D. and Stoll, B., 2004, Helium loss and shock pressure in Martian meteorites - A relationship (abstract). Meteoritics and Planetary Science, 39, A96.
  70. Schwenzer, S. P., Fritz, J., Stoffler, D., Trieloff, M., Amini, M., Greshake, A., Herrmann, S., Herwig, K., Jochum, K. P., Mohapatra, R.K., Stoll, B. and Ott, U., 2008, Helium loss from Martian meteorites mainly induced by shock metamorphism: Evidence from new data and a literature compilation. Meteoritics and Planetary Science, 43, 1841-1859. https://doi.org/10.1111/j.1945-5100.2008.tb00647.x
  71. Schwenzer, S.P., Herrmann, S., Mohapatra, R.K. and Ott, U., 2007, Noble gases in mineral separates from three shergottites: Shergotty, Zagami, and EETA79001. Meteoritics and Planetary Science, 42, 387-412. https://doi.org/10.1111/j.1945-5100.2007.tb00241.x
  72. Shoemaker, E.M., Hackman, R.J. and Eggleton, R.E., 1963, Interplanetary correlation of geologic time. Advances in the Astronautical Science, 8, 70-89.
  73. Shuster, D.L. and Weiss, B.P., 2005, Martian surface paleotemperatures from thermochronology of meteorites. Science, 309, 594-597. https://doi.org/10.1126/science.1113077
  74. Stoffler, D., Bischoff, A., Buchwald, U. and Rubin, A.E., 1988, Shock effects in meteorites. In: Meteoritics and the Eearly Solar System (eds. J. F. Kerridge and M. S. Mathews), University of Arizona Press, Tucson. page.
  75. Stoffler, D., Horneck, G., Sieglinde, O., Hornemann, U., Cockell, C.S., Moeller, R., Meyer, C., de Vera, J.-P., Fritz, J. and Artemieva, N., 2007, Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus, 186, 585-588. https://doi.org/10.1016/j.icarus.2006.11.007
  76. Stoffler, D., Keil, K. and Scott, E.R.D., 1991, Shock metamorphism or ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 3845-3867. https://doi.org/10.1016/0016-7037(91)90078-J
  77. Stoffler, D., Ostertag, R., Jammes, C., Pfannschmidt, G., Sen Gupta, P.R., Simon, S.B., Papike, J.J. and Beauchamp, R. H., 1986, Shock metamorphism and petrology of the shergotty achondrites Geochimica et Cosmochimica Acta, 50, 889-903. https://doi.org/10.1016/0016-7037(86)90371-6
  78. Stolper, E.M. and McSween, H.Y., 1979, Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta, 43, 1475-1498. https://doi.org/10.1016/0016-7037(79)90142-X
  79. Strutt, R.J., 1908, On the accumulation of helium in geological time. Proceedings of the Royal Scociety of London, Series A 81, 272-277. https://doi.org/10.1098/rspa.1908.0079
  80. Strutt, R.J., 1909, The accumulation of helium in geological time. II. Proceedings of the Royal Scociety of London. Series A 83, 96-99. https://doi.org/10.1098/rspa.1909.0081
  81. Strutt, R.J., 1910. The accumulation of helium in geological time. III. Proceedings of the Royal Scociety of London, Series A 83, 298-301. https://doi.org/10.1098/rspa.1910.0017
  82. Swindle, T.D., Caffee, M.W. and Hohenberg, C.M., 1986, Xenon and other noble gasesin shergottites. Geochimica et Cosmochimica Acta, 50, 1001-1015. https://doi.org/10.1016/0016-7037(86)90381-9
  83. Treiman, A.H., 1998, The history of Alan Hills 84001 revisited: Multiple shock events. Meteoritics and Planetary Science, 33, 753-764. https://doi.org/10.1111/j.1945-5100.1998.tb01681.x
  84. Treiman, A.H., McKay, G.A., Bogard, D.D., Mittlefehldt, D. W., Wang, M.-S., Keller, L., Lipschutz, M.E., Lindstrom, M.M. and Garrison, D., 1994, Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct. Meteoritics 29, 581-592. https://doi.org/10.1111/j.1945-5100.1994.tb00771.x
  85. Tripathy, A., Monteleone, B.D., Van Soest, M.C., Hodges, K.V. and Hourigan, J.K., 2010. In situ detrital zircon (UTh)/He thermochronology. AGU Fall Meeting, V34A-05.
  86. Turner, G., Knott, S.F., Ash, R.D., and Gilmour, J.D., 1997. Ar-Ar geochronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. Geochimica et Cosmochimica Acta, 61, 3835-3850. https://doi.org/10.1016/S0016-7037(97)00285-8
  87. Wadhwa, M., Lentz, R.C.F., McSween, H.Y. and Crozaz, G., 2001, A Petrologic and Trace Element Study of Dar al Gani 476 and Dar al Gani 489: Twin Meteorites with Affinities to Basaltic and Lherzolitic Shergottites. Meteoritics and Planetary Science, 36, 195-208. https://doi.org/10.1111/j.1945-5100.2001.tb01864.x
  88. Wadhwa, M., McSween, H.Y. and Crozaz, G., 1994, Petrogenesis of shergottite meteorites inferred from minor and trace element microdistributions. Geochimica et Cosmochimica Acta, 58, 4213-4229. https://doi.org/10.1016/0016-7037(94)90274-7
  89. Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., Macdonald, F.A. and Wikswo, J.P., 2000, A low temperature transfer of ALH84001 from Mars to earth. Science, 290, 465-472.
  90. Weiss, B.P., Shuster, D.L. and Stewart, S.T., 2002, Temperature on Mars from $^{40}Ar/^{39}Ar$ thermochronology of ALH84001. Earth and Planetary Science Letters, 201, 465-472. https://doi.org/10.1016/S0012-821X(02)00729-X
  91. Wiens, R.C. and Pepin, R.O., 1986, Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA79001. Geochimica et Cosmochimica Acta, vol, 295-307.
  92. Xirouchakis, D., Draper, D.S., Schwandt, C.S. and Lanzirotti, A., 2002, Crystallization conditions of Los Angeles, a basaltic Martian meteorite. Geochimica et Cosmochimica Acta, 66, 1867-1880. https://doi.org/10.1016/S0016-7037(01)00892-4
  93. Zeitler, P.K., Herczeg, A.L., McDougall, I. and Honda, M., 1987, U-Th-He dating of apatite: a potential thermochronometer. Geochimica et Cosmochimica Acta, 51, 2865-2868. https://doi.org/10.1016/0016-7037(87)90164-5