DOI QR코드

DOI QR Code

NEW LOOK AT THE CONSTRUCTIONS OF MULTIWAVELET FRAMES

  • Kim, Hong-Oh (Department of Mathematical Sciences Korea Advanced Institute of Science and Technology) ;
  • Kim, Rae-Young (Department of Mathematics Yeungnam University) ;
  • Lim, Jae-Kun (Department of Applied Mathematics Hankyong National University)
  • Received : 2008.12.13
  • Published : 2010.05.31

Abstract

Using the fiberization technique of a shift-invariant space and the matrix characterization of the decomposition of a shift-invariant space of finite length into an orthogonal sum of singly generated shift-invariant spaces, we show that the main result in [13] can be interpreted as a statement about the length of a shift-invariant space, and give a more natural construction of multiwavelet frames from a frame multiresolution analysis of $L^2(\mathbb{R}^d)$.

Keywords

References

  1. J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389-427. https://doi.org/10.1006/acha.1997.0237
  2. J. J. Benedetto and O. M. Treiber, Wavelet frames: multiresolution analysis and extension principles, Wavelet transforms and time-frequency signal analysis, 3-36, Appl. Numer. Harmon. Anal., Birkhauser Boston, Boston, MA, 2001.
  3. C. de Boor, R. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in L2($R^d$), J. Funct. Anal. 119 (1994), no. 1, 37-78. https://doi.org/10.1006/jfan.1994.1003
  4. M. Bownik, The structure of shift-invariant subspaces of $L^2(R^n$), J. Funct. Anal. 177 (2000), no. 2, 282-309. https://doi.org/10.1006/jfan.2000.3635
  5. H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
  6. R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259-288. https://doi.org/10.1007/BF02762276
  7. H. O. Kim, R. Y. Kim, and J. K. Lim, Local analysis of frame multiresolution analysis with a general dilation matrix, Bull. Austral. Math. Soc. 67 (2003), no. 2, 285-295. https://doi.org/10.1017/S000497270003375X
  8. H. O. Kim, R. Y. Kim, and J. K. Lim, Internal structure of the multiresolution analyses defined by the unitary extension principle, J. Approx. Theory 154 (2008), no. 2, 140-160. https://doi.org/10.1016/j.jat.2008.03.009
  9. H. O. Kim and J. K. Lim, On frame wavelets associated with frame multiresolution analysis, Appl. Comput. Harmon. Anal. 10 (2001), no. 1, 61-70. https://doi.org/10.1006/acha.2000.0322
  10. H. O. Kim and J. K. Lim, Applications of shiff-invariant space theory to some problems of multiresolution analysis of $L^2(R^d)$, in: D. Deng, D. Huang, R.-Q. Jia, W. Lin and J. Wang (Eds.), Studies in Advanced Mathematics 25: Wavelet Analysis and Applications, American Mathematical Society/International Press, Boston 2001, 183-191.
  11. J. K. Lim, Gramian analysis of multivariate frame multiresolution analyses, Bull. Austral. Math. Soc. 66 (2002), no. 2, 291-300. https://doi.org/10.1017/S0004972700040132
  12. S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2$(R), Trans. Amer. Math. Soc. 315 (1989), no. 1, 69-87. https://doi.org/10.2307/2001373
  13. L. Mu, Z. Zhang, and P. Zhang, On the higher-dimensional wavelet frames, Appl. Comput. Harmon. Anal. 16 (2004), no. 1, 44-59. https://doi.org/10.1016/j.acha.2003.10.002
  14. A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_{2}(R^{d})$, Canad. J. Math. 47 (1995), no. 5, 1051-1094. https://doi.org/10.4153/CJM-1995-056-1
  15. A. Ron and Z. Shen, Affine systems in $L_{2}(R^{d})$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997), no. 2, 408-447. https://doi.org/10.1006/jfan.1996.3079