Magnetic susceptibility artifact를 줄이기 위한 PROPELLER 확산강조영상기법의 유용성에 대한 평가

Evaluation of the Usefulness of PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) Technique to Reduce the Magnetic susceptibility artifact

  • 조재환 (순천향대학교 부천병원 영상의학과)
  • 투고 : 2010.02.23
  • 심사 : 2010.03.30
  • 발행 : 2010.03.31

초록

PROPELLER 확산강조영상기법이 금속에 의해 발생한 magnetic susceptibility artifact를 제거 할 수 있는지를 알아보고자 하였다. 뇌 MRI를 촬영한 환자 중에서 치아에 금속성 이물질을 가지고 있는 환자 20명을 대상으로 3.0T MR scanner를 이용하여 b value 0, 1000 s/mm2을 기준으로 에코 평면확산강조영상, PROPELLER 확산강조영상과 각각의 ADC map영상을 획득한 후 양쪽 측두엽, 뇌교, 안와등 네 부위에서 발생한 magnetic susceptibility artifact의 발생률을 비교 하였다.에코평면 확산강조영상 기법에서 금속물질이 있는 경우 magnetic susceptibility artifact가 발생되어 진단에 큰 제한점을 두었지만 PROPELLER 확산강조영상기법은 magnetic susceptibility artifact를 감소함으로써 임상적으로 정확한 진단에 도움이 될 것으로 생각된다.

This study attempted to examine whether the propeller diffusion weighted image method may remove magnetic susceptibility artifacts caused by metallic materials. A comparison of occurrence rates of magnetic susceptibility artifacts in the four regions, both temporal lobes, pons, and orbit, between b = 0 and b = 1,000 s/mm2 images was made after obtaining echo-planar diffusion weighted image, propeller diffusion weighted image, and ADC map images, respectively, from a total of 20 patients who had MRI shots taken of their brain and were found to be with retained metallic foreign bodies within their teeth using a 3.0T MR scanner. In the case of echo-planar diffusion weighted image technique, the presence of metallic materials may bring in some limits on accurate diagnosis due to magnetic susceptibility artifacts, while the propeller diffusion weighted image technique where magnetic susceptibility artifacts decrease is expected to be more useful in ensuring accurate diagnosis in the clinical context.

키워드

참고문헌

  1. Warach S, Ga J, Wielopolski P, et al, "Acute humanst roke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging," Ann Neurol, Vol. 37, No. 2, pp. 231-241, 1995. https://doi.org/10.1002/ana.410370214
  2. Lovbald KO, Laubach HJ, Baird AE, et al, "Clinical experience of diffusion-weighted MR in patients with acute stroke," AJNR, Vol. 19, No. 6, pp. 1061-1066, 1998.
  3. Warach S, Chien D, Li W, et al, "Fast magnetic reson ance diffusion-weighted imaging of acute human stroke," Neurology, Vol. 42, No. 11, pp. 1717-1723, 1992. https://doi.org/10.1212/WNL.42.9.1717
  4. Marks MP, Crespigny A, Lentz D, et al, "Moseley ME. Acute and chronic stroke Navigated spin-echo diffusion-weighted MR imaging," Radiology, Vol. 199, No. 1, pp. 403-408, 1996. https://doi.org/10.1148/radiology.199.2.8668785
  5. Kim KJ, "토끼 골격근 손상의 자기공명영상: 확산강조 영상과 T2강조영상의 비교," 대한방사선의학회지, Vol. 42, No. 1, pp. 175-179, 2000.
  6. Turner R, Le Bihan D, Maier J, et al, " Echo-planar imaging of intravoxel incoherent motion," Radiology, Vol. 177, No. 2, pp. 407-414, 1990. https://doi.org/10.1148/radiology.177.2.2217777
  7. Ojemann JG, Akbudak E, Snyder AZ, et al, "Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts," Neuro image, Vol. 6, No. 3, pp. 156-167, 1997.
  8. Frayne R, Goodyear BG, Dickhoff P, et al, "Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging," Invest Radiol, Vol. 38, No. 7, pp. 385-402, 2003.
  9. Lin W, An H, Chen Y, et al, "Practical consideration for 3T imaging," Magn Reson Imaging, Vol. 11, No. 4, pp. 615-639, 2003. https://doi.org/10.1016/S1064-9689(03)00068-0
  10. Forbes KP, Pipe JG, Karis JP, et al, "Improved image quality and detection of acute cerebral infarction with PROPELLER diffusion-weighted MR imaging," Radiology, Vol. 225, No. 1, pp. 551-555, 2002 https://doi.org/10.1148/radiol.2252011479
  11. Wang FN, Huang TY, Lin FH, et al, "PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions," Magn Reson Med, Vol. 54, No. 5, pp. 1232-1240, 2005. https://doi.org/10.1002/mrm.20677
  12. Pipe JG, Farthing VG, Forbes KP, "Multishot diffusi on-weighted FSE using PROPELLER MRI," Magn Reson Med, Vol. 47, No. 1, pp. 42-52, 2002. https://doi.org/10.1002/mrm.10014
  13. Forbes KP, Pipe JG, Bird CR, Heiserman JE, "PROPELLER MRI: clinical testing of a novel technique for quantification and compensation of head motion," J Magn Reson Imaging, Vol. 14, No. 3, pp. 215-222, 2001. https://doi.org/10.1002/jmri.1176
  14. Pipe JG, "Motion correction with PROPELLER MRI: application to head motion and free-breathing car diac imaging," Magn Reson Med, Vol. 42, No. 5, pp. 963-969, 1999. https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
  15. Son CH, Kin YS, "3.0T 자기공명영상기기에서 PRO PELLER와 에코 평면 확산강조영상: 접형동의 함기화의 정도에 따른 뇌교부위의 자기화률인공음영," 대한영상의학회지, Vol. 55, No. 1, pp. 321-326, 2006.
  16. Hiroyuki Kabasawa, Yoshitaka Masutani, Shigeki Aoki, et al, "3T PROPELLER diffusion tensor fiber tractography: a feasibility study for cranial nerve fiber tracking, Radiation Medicine," Vol. 25, No. 9, pp. 1862-5274, 2007.
  17. Kirsten P. Forbes, MD, James G, et al, "Improved Image Quality and Detection of Acute Cerebral Infarction with PROPELLER Diffusion-weighted MR Imging," Rad