References
- J. M. Carrasco et al., "Power-electronic systems for the grid integration of renewable energy sources: A survey," IEEE Trans. Ind. Electron., Vol. 53, Issue 4, pp. 1002-1016, Jun., 2006. https://doi.org/10.1109/TIE.2006.878356
- U.S Department of Energy, Summary of annual merit review fuel cells subprogram, [Online]. Available: http://www.hydrogen.energy.gov/pdfs/review07/42072-05_fuel_cells.pdf
- S. J. Jang, T. W. Lee, K. S. Kang, S. S. Kim, C. Y. Won, "A new active clamp sepic-flyback converter for a fuel cell generation system," in Proc. Ind. Electron. Soc., pp. 2538-2542, 2005.
- T. F. Wu, Y. S. Lai, J. C. Hung, Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," IEEE Trans. Ind. Electron., Vol. 55, Issue 1, pp. 154-162, Jun., 2008. https://doi.org/10.1109/TIE.2007.903925
- P. W. Lee, Y. S. Lee, D. K. Cheng, X. C. Liu, "Steady-state analysis of an interleaved boost converter with coupled inductors," IEEE Trans. Ind. Electron., Vol. 47, Issue 4, pp. 787-795, Aug., 2000. https://doi.org/10.1109/41.857959
- L. Huber, B. T. Irving, M. M. Jovanovic, "Open-loop control methods for interleaved DCM/CCM boundary boost PFC converters," IEEE Trans. on Power Elect., Vol. 23, Issue 4, pp. 1649-1657, July, 2008 https://doi.org/10.1109/TPEL.2008.924611
- Y. Chen, K. M. Smedley, "Parallel operation of onecycle controlled three-phase PFC rectifiers," IEEE Trans. Ind. Electron., Vol. 54, Issue 6, pp. 3217-3224, Dec., 2007. https://doi.org/10.1109/TIE.2007.905917
- B. A. Miwa, D. M. Dtten, M. F. Schlecht, "High efficiency power factor correction using interleaving technique," IEEE Pro. APEC'92, Vol. 1, pp. 557-568, Feb., 1992.
- H. B. Shin, E. S. Jang, J. K. Park, H. W. Lee, T. A. Lipo, "Small-signal analysis of multiphase interleaved boost converter with coupled inductor," IEE Proc. Electr. Power Appl., Vol. 152, No. 5, pp. 1161-1170, Sept., 2005. https://doi.org/10.1049/ip-epa:20045275
- J. J. Lee, B. H. Kwon, "Active-clamped ripple-free DC/DC converter using an input-output coupled inductor," IEEE Trans. Ind. Electron., Vol. 55, Issue 4, pp. 1842-1854, April, 2008. https://doi.org/10.1109/TIE.2007.907666
- R. J. Wai, C. Y. Lin, R. Y. Duan, Y. R. Chang, "High-efficiency DC-DC converter with high voltage gain and reduced switch stress," IEEE Trans. Ind. Electron., Vol. 54, Issue 1, pp. 354-364, Feb., 2007. https://doi.org/10.1109/TIE.2006.888794
- H. B. Shin, J. G. Park, S. K. Chung, H. W. Lee, T. A. Lipo, "Generalized steady-state analysis of multiphase interleaved boost converter with coupled inductors," IEE Electr. Power Appl., Vol. 152, Issue 3, pp. 584-594, May, 2005. https://doi.org/10.1049/ip-epa:20045052
- M. H. Todorovic, L. Palma, P. N. Enjeti, "Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion," IEEE Trans. Ind. Electron., Vol. 55, Issue 3, pp. 1247-1255, March, 2008. https://doi.org/10.1109/TIE.2007.911200
- C. T. Pan, Y. H. Liao, "Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing," IEEE Trans. Ind. Electron., Vol. 55, Issue 7, pp. 2776-2785, July, 2008. https://doi.org/10.1109/TIE.2008.925647
- N. Mohan, T. M. Undeland, W. P. Robbins, "Power electronics converter," application and design, 3rd ed. JOHN WILEY & SONS, INC., ch.7, 2003
Cited by
- Analysis, design and implementation of isolated bidirectional converter with winding-cross-coupled inductors for high step-up and high step-down conversion system vol.7, pp.1, 2014, https://doi.org/10.1049/iet-pel.2013.0072
- Cascaded Bidirectional Converter Topology for 700 W Transformerless High Frequency Inverter vol.27, pp.5, 2016, https://doi.org/10.1007/s40313-016-0256-0
- Highly-Efficient and Compact 6 kW/4 × 125 kHz Interleaved DC-DC Boost Converter with SiC Devices and Low-Capacitive Inductors vol.10, pp.3, 2017, https://doi.org/10.3390/en10030363
- Fault diagnosis algorithm based on switching function for boost converters vol.102, pp.7, 2015, https://doi.org/10.1080/00207217.2014.966780
- A Study on Variable Speed Generation System with Energy Saving Function vol.8, pp.1, 2013, https://doi.org/10.5370/JEET.2013.8.1.137
- Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique vol.36, pp.5, 2011, https://doi.org/10.1016/j.renene.2010.10.023
- MPPT controller for an interleaved boost dc–dc converter used in fuel cell electric vehicles vol.39, pp.27, 2014, https://doi.org/10.1016/j.ijhydene.2014.03.185
- A Unified Analytical Modeling of the Interleaved Pulse Width Modulation (PWM) DC–DC Converter and Its Applications vol.28, pp.11, 2013, https://doi.org/10.1109/TPEL.2013.2245683
- Improved performance and energy management strategy for proton exchange membrane fuel cell/backup battery in power electronic systems vol.42, pp.13, 2017, https://doi.org/10.1016/j.ijhydene.2016.09.191
- Modeling and Management of Batteries and Ultracapacitors for Renewable Energy Support in Electric Power Systems–An Overview vol.43, pp.12, 2015, https://doi.org/10.1080/15325008.2015.1038757
- Effects of the Sintering Temperature on the Properties of Ce0.85Gd0.1Ca0.05O2- δ Electrolyte Materials for SOFC vol.140, pp.1, 2012, https://doi.org/10.1080/10584587.2012.741453
- A Study on the Design and Selection of Switch and Diode by Analyzing Current Ringing on DCM Bi-directional Buck Converter vol.17, pp.1, 2012, https://doi.org/10.6113/TKPE.2012.17.1.14
- A High Efficiency DC-DC Boost Converter with Passive Regenerative Snubber vol.9, pp.2, 2014, https://doi.org/10.5370/JEET.2014.9.2.501
- New Multiphase Hybrid Boost Converter with Wide Conversion Ratio for PV System vol.2014, 2014, https://doi.org/10.1155/2014/637468
- Comparison of Battery Charging Strategies for PHEVs using Propulsion Motor Inductance and Multi-Function Inverter vol.16, pp.4, 2011, https://doi.org/10.6113/TKPE.2011.16.4.326
- A novel reconfigurable hybrid system for fuel cell system vol.40, pp.43, 2015, https://doi.org/10.1016/j.ijhydene.2015.08.031
- Optimized Multiport DC/DC Converter for Vehicle Drivetrains: Topology and Design Optimization vol.8, pp.8, 2018, https://doi.org/10.3390/app8081351