DOI QR코드

DOI QR Code

Three-Phase Z-Source Hybrid Active Power Filter System

3상 Z-소스 하이브리드 능동전력필터 시스템

  • Published : 2010.02.20

Abstract

In this paper, a Z-source hybrid active power filter is proposed to compensate the harmonics and reactive power in power distribution system. The proposed system is composed of a 7th harmonics-tuned passive filter and an active power filter with a Z-source inverter topology, while voltage source PWM inverter or current source PWM inverter are applied as the power converter topology of conventional active power filters. The Z-source impedance network along with shoot through capability would ensure a constant DC voltage across the DC link. A polymer electrolyte membrane fuel cell is employed as an compensation DC energy source of the proposed system and its equivalent R-L-C circuit is modeled for simulation. As the compensation and control algorithm of the proposed system, the current synchronous detection algorithm is applied. The simulation analysis by PSIM is performed under the three-phase 220V/60Hz voltage source and 25A nonlinear diode loads. The effectiveness of the proposed the system is verified in the steady and transient states.

본 연구에서는 비선형 부하에서 발생되는 기본파 무효전력 및 고조파를 보상하기 위한 종전의 전압형 및 전류형 PWM 능동전력필터를 대체 할 수 있는 Z-소스 인버터 토폴로지의 하이브리드 능동전력필터에 대하여 고찰하였다. Z-소스 토폴로지의 능동전력필터의 보상 DC전원으로는 PEMFC가 사용되며, Z-소스 인버터의 shoot-through 듀티비의 조절에 의하여 낮은 연료전지의 전압을 높은 보상 전압으로 부스트 한다. 제안된 시스템은 병렬형 Z-소스 능동전력필터와 7차 고조파 (420Hz) 동조 필터로 구성되며, 이 구성에 의하여 Z-소스 능동전력필터의 스위치 디바이스의 전압 스트레스는 감소된다. 제안된 Z-소스 하이브리드 능동전력필터의 보상 알고리즘으로는 전류 동기 검출법이 사용되었다. 3상 220V/60Hz, 25A급 비선형 다이오드 부하 조건하에서 PSIM 시뮬레이션을 수행하였으며, 정상상태 및 과도상태에서의 제안된 시스템의 보상 성능을 파악하였다.

Keywords

References

  1. Y.G. Jung, Y.C. Lim and S. H. Yang, "Single-Phase Active Power Filter based on Three-Dimensional Current Coordinates", IEE Proc. Electr. Power Appl., Vol. 147, No. 6, pp. 572-578, 2000, November. https://doi.org/10.1049/ip-epa:20000720
  2. Y.G. Jung, W.Y. Kim, Y.C. Lim, S.H. Yang and F.Harashima, "The Algorithm of Expanded Current Synchronous Detection for Active Power Filters Considering Three-Phase Unbalanced Power System", IEEE Trans. Ind. Electron., Vol. 50, No. 5, pp. 1000-1006, 2003.
  3. M. Routimo, M. Salo, and H. Tuusa, "Comparison of Voltage-Source and Current-Source Shunt Active Power Filters", IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 636-643, 2007. https://doi.org/10.1109/TPEL.2006.890005
  4. M. EI-Habrouk, M. K. Darwish, and P. Mehta, "Active Power Filters : A Review", IEE Proc. Electr. Power Appl., Vol. 147, No. 5, pp. 403-413, 2000, September. https://doi.org/10.1049/ip-epa:20000522
  5. P. Flores, J. Dixon, R. Carmi, P. Barriuso, and L. Moran, "Static Var Compensator and Active Power Filter with Power Injection Capability, Using 27-Level Inverters and Photovoltaic Cells", IEEE Trans. Ind. Electron., Vol. 56, No. 1, pp. 130-138, 2009. https://doi.org/10.1109/TIE.2008.927229
  6. H. R. Seo, G. H. Kim, M. H. Ali, M. W. Park, and I. K. Yu, "A Study on the Performance Analysis of the Grid-Connected PV-AF System", in Conf. Rec. of Electrical Machines and Systems, pp. 371-375, 2007.
  7. Fang Zheng Peng, "Z-Source Inverter", IEEE Trans. Ind. Applicat., Vol. 39, No. 2, pp. 504-510, 2003. https://doi.org/10.1109/TIA.2003.808920
  8. D. M. Vilathgamuwa, C. J. Gajanayake, P.C. Loh, and Y.W. Li, "Voltage Sag Compensation with Z-source Inverter Based Dynamic Voltage Restorer", in Conf. Rec. of IEEE IAS'06, pp. 2242-2248, 2006.
  9. M. Shen, J. Wang, A. Joesph, F.Z. Feng, L. Tolbert, and D.J. Adams, "Constant Boost Control of the Z-Source Inverter to Minimize Current Ripple and Voltage Stress," IEEE Trans. Power. Electron., Vol. 42, No. 3, pp. 770-777, 2006.
  10. J. H. Oum, Y. G. Jung, and Y. C. Lim, "Z-source Active Power Filter with a Fuel Cells Source", in Conf. Rec. of ICPE'07 (Daegu,Korea), 2007, pp. 467-471, in CD-ROM version.
  11. 정영국, "연료전지 전원을 갖는 Z-소스 능동전력필터에 의한 장거리 배전선로의 전압 THD 저감", 대한전기학회 논문지, 제57권, 제12호, pp. 2161-2166, 2008. 12.
  12. 정영국,"연료전지 전원을 갖는 3상 Z-소스 동적 전압보상기", 한국조명전기설비학회 논문지, 제22권 제10호,pp. 41-48, 2008.
  13. W. J. Choi," New Approaches to Improve the Performance of the PEM Based Fuel Cell Power Systems", ph.D. dissertation, Dept. Elect. Eng., Texas A & M University, 2004, August.
  14. J. M. Correa, F. A. Farret, J. R. Gomes, and M. G. Simoes, "Simulation of Fuel Cell Stacks Using a Computer Controlled Power Rectifier with the Purposes of Actual High Power Injection Applications", IEEE Trans. Ind. Applicat., Vol. 39, No. 4, pp. 1136-1142, 2003. https://doi.org/10.1109/TIA.2003.814548
  15. W.K. Na, B. Gou, and B. Diong, "Nonlinear Control of PEM fuel Cells by Exact Linearization", IEEE Trans. Ind. Applicat., Vol. 43, No. 6, pp. 1426-1433, 2007. https://doi.org/10.1109/TIA.2007.908193
  16. R. Inzunza, H. Fujita, and H. Akagi, "A 6.6-kV Transformerless Shunt Hybrid Active Filter for Installation on a Power Distribution System", IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 893-900, 2005. https://doi.org/10.1109/TPEL.2005.850951
  17. H. Fujita, and H. Akagi, "A Hybrid Active Filter for Damping of Harmonic Resonance in Industrial Power Systems", IEEE Trans. Power Electron., Vol. 15, No.2, pp. 215-222, 2000. https://doi.org/10.1109/63.838093
  18. J. Liu, J. Hu, and L. Xu, " Dynamic Modeling and Analysis of Z-source Converter -Derivation of AC Small Signal Model and Design-Oriented Analysis," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 1786-1796, 2007. https://doi.org/10.1109/TPEL.2007.904219
  19. C. J. Gajanayake, D. M. Vilathgamuwa, P. C. Loh, "Modeling and Design of Multi-Loop Closed Loop Controller for Z-source Inverter for Distributed Generation", in Conf. Rec. of IEEE PESC, pp.1353-1359, 2006.
  20. M. Shen, Q. Tang and F. Z. Peng, "Modeling and Controller Design of the Z-source Inverter with Inductive Load", in Conf. Rec. of IEEE PESC, pp. 1804-1809, 2007.
  21. J. W. Jung, and A. Kethani, "Control of a Fuel Cell Based Z-source Converter", IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 467-476, 2007. https://doi.org/10.1109/TEC.2006.874232
  22. F. Z. Peng, M. Shen, and Z. Qian, "Maximum Boost Control of the Z-source Inverter", IEEE Trans. Power Electron., Vol. 20, No. 4 , pp. 833-838, 2005. https://doi.org/10.1109/TPEL.2005.850927
  23. M. Shen, J. Wang, A. Joseph, F. Z. Peng, L. M. Tolbert, and D. J. Adams, "Constant Boost Control of the Z-source Inverter to Minimize Current Ripple and Voltage Stress", IEEE Trans. Ind. Electron., Vol. 42, No. 3, pp. 770-777, 2006.
  24. Q. V. Tran, T. W. Chun, J. R. Ahn, and H. H. Lee," Algorithms for Controlling Both the DC Boost and AC Output Voltage of Z-source Inverter", IEEE Ind. Electron., Vol. 54, No. 5, pp. 2745-2750, 2007 https://doi.org/10.1109/TIE.2007.895146
  25. C. J. Gajanayake, D. M. Vilathgamuwa, P. C. Loh, "Modeling and Design of Multi-Loop Closed Loop Controller for Z-source Inverter for Distributed Generation", in Conf. Rec. of IEEE PESC, pp.1353-1359, 2006.
  26. X. Ding, Z. Qian, S. Yang, B. Cui, and F.Z. Peng, "A Direct Peak DC Link Boost Voltage Control Strategy in Z-source Inverter", in Conf. Rec. of IEEE APEC, pp. 648-653, 2007.
  27. H. Akagi, Power Converters for Utility Applications in Japan, IEEE PESC'06 Tutorial Book - Tutorial 1, pp. 24-33, 2006.
  28. D. Rivas, L .Moran, J.W.Dixon, and J.R Espinoza, "Improving Passive Filter Compensation Performance with Active Techniques", IEEE Trans. Ind. Electron., Vol. 50, No. 1, pp. 161-170, 2003. https://doi.org/10.1109/TIE.2002.807658