A Study for the Water Droplet on a Stripe-patterned Surface

주기적 줄무늬 구조물 위의 물 액적에 관한 연구

  • Choi, Ho-Jin (School of Mechanical Engineering, Pusan National University) ;
  • Hong, Seung-Do (School of Mechanical Engineering, Pusan National University) ;
  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan National University) ;
  • Yoon, Hyun-Sik (Advanced Ship Engineering Research Center, Pusan National University)
  • 최호진 (부산대학교 기계공학부) ;
  • 홍승도 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부) ;
  • 윤현식 (부산대학교 첨단조선공학연구센터)
  • Published : 2010.02.10

Abstract

We investigated the variation in contact angle of a nano-sized water droplet on a nano stripe-patterned surface using molecular dynamics simulation. By changing the height and width of the stripe pillar, and the gap width of the stripes, we observed the contact angle of water droplet in equilibrium. When the surface energies were 0.1 and 0.3 kcal/mol, the calculated contact angles were in good agreement with the Cassie and Baxter equation. However, when the surface energy is 0.5 kcal/mol, the contact angles are observed to be perturbed along the Cassie and Baxter equation.

Keywords

References

  1. Yang, C., Tartaglino, U. and Persson, B. N. J., 2006, Influence of surface roughness on superhydrophobicity, Physical Review Letters, Vol. 97, p. 116103. https://doi.org/10.1103/PhysRevLett.97.116103
  2. Wenzel, R. N., 1936, Resistance of solid surfaces to wetting by water, Industrial and Engineering Chemistry, Vol. 28, No. 8, pp. 988-994. https://doi.org/10.1021/ie50320a024
  3. Cassie, A. B. D. and Baxter, S., 1944, Wettability of porous surfaces, Transactions of the Faraday Society, Vol. 40, pp. 546-551. https://doi.org/10.1039/tf9444000546
  4. Lundgren, M., Allan, N. L. and Cosgrove, T., 2003, Molecular dynamics study of wetting of a pillar surface, Langmuir, Vol. 19, pp. 7127-7129. https://doi.org/10.1021/la034224h
  5. Patankar, N. A., 2003, On the modeling of hydrophobic contact angles on rough surfaces, Langmuir, Vol. 19, pp. 1249-1253. https://doi.org/10.1021/la026612+
  6. Kim, D., Kim, J. and Hwang, W., 2006, Prediction of contact angle on a microline patterend surface, Surface Sience, Vol. 600, pp. L301-304.
  7. Oner, D. and McCarthy, J., 2000, Ultrahydrophobic surfaces, Effects of topography length scales on wettability, Langmuir, Vol. 16, pp. 7777-7782. https://doi.org/10.1021/la000598o
  8. Spori, D. M., Drobek, T., Zürcher, S., Ochsner, M., Sprecher, C., Mühlebach, A. and Spencer, N. D., 2008, Beyond the lotus effect: Roughness influences on wetting over a wide surface-energy range, Langmuir, Vol. 24, pp. 5411-5417. https://doi.org/10.1021/la800215r
  9. Yong, X. and Zhang, L. T., 2009, Nanoscale Wetting on Groove-Patterned Surfaces, Langmuir, Vol. 25, pp. 5045-5053. https://doi.org/10.1021/la804025h
  10. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L. V. and Schulten, K., 2005, Scalable molecular dynamics with NAMD, Journal of computational chemistry, Vol. 26, pp. 1781-1802. https://doi.org/10.1002/jcc.20289
  11. Hong, S. D., Ha, M. Y. and Balachandar, S., 2009, Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation, Journal of Colloid and Interface Science, Vol. 339, pp. 187- 195. https://doi.org/10.1016/j.jcis.2009.07.048
  12. Brandon, S., Haimovich, N., Yeger, E. and Marmur, A., 2003, Partial wetting of chemically patterned surfaces:The effect of drop size, Journal of Colloid and Interface Science, Vol. 263, pp. 237-243. https://doi.org/10.1016/S0021-9797(03)00285-6
  13. Marmur, A., 2003, Wetting on hydrophobic rough surfaces:To be heterogeneous or not to be-, Langmuir, Vol. 19, pp. 8343-8348. https://doi.org/10.1021/la0344682