DOI QR코드

DOI QR Code

POLYMERIZATION SHRINKAGE KINETICS OF SILORANE-BASED COMPOSITES

Silorane 복합레진의 중합수축의 동력학

  • Kwon, Young-Chul (Department of Conservative Dentistry, School of Dentistry, Seoul National University) ;
  • Lee, In-Bog (Department of Conservative Dentistry, School of Dentistry, Seoul National University)
  • 권영철 (서울대학교 치의학전문대학원 치과보존학교실) ;
  • 이인복 (서울대학교 치의학전문대학원 치과보존학교실)
  • Published : 2010.01.29

Abstract

Dental composites have improved significantly in physical properties over the past few decades. However, polymerization shrinkage and stress is still the major drawback of composites, limiting its use to selected cases. Much effort has been made to make low shrinking composites to overcome this issue and silorane-based composites have recently been introduced into the market. The aim of this study was to measure the volumetric polymerization shrinkage kinetics of a silorane-based composite and compare it with conventional methacrylate-based composites in order to evaluate its effectiveness in reducing polymerization shrinkage. Five commercial methacrylate-based (Beautifil, Z100, Z250, Z350 and Gradia X) and a silorane-based (P90) composites were investigated. The volumetric change of the composites during light polymerization was detected continuously as buoyancy change in distilled water by means of Archemedes' principle, using a newly made volume shrinkage measurement instrument. The null hypothesis was that there were no differences in polymerization shrinkage, peak polymerization shrinkage rate and peak shrinkage time between the silorane-based composite and methacrylate-based composites. The results were as follows: 1. The shrinkage of silorane-based (P90) composites was the lowest (1.48%), and that of Beautifil composite was the highest (2.80%). There were also significant differences between brands among the methacrylate-based composites. 2. Peak polymerization shrinkage rate was the lowest in P90 (0.13%/s) and the highest in Z100 (0.34%/s). 3. The time to reach peak shrinkage rate of the silorane-based composite (P90) was longer (6.7 s) than those of the methacrylate-based composites (2.4-3.1 s). 4. Peak shrinkage rate showed a strong positive correlation with the product of polymerization shrinkage and the inverse of peak shrinkage time (R = 0.95).

복합레진이 개발된 이후 많은 물성의 향상이 이루어졌으나 복합레진의 중합수축은 아직 해결되지 않은 주요 단점으로 남아있다. 중합수축이 적은 복합레진을 만들기 위한 많은 노력이 이루어졌고, 최근에 기존의 methacrylate 기질이 아닌 silorane 기질의 복합레진이 개발되었다. 본 연구에서는 silorane 기질의 복합레진과 methacrylate 기질의 복합레진의 중합수축거동을 측정하고 비교하고자 하였다. 온도변화에 민감하지 않으며 실시간으로 복합레진의 체적 중합수축을 측정할 수 있는 계측장치를 제작하여 사용하였다. 5종의 methacrylate 기질의 수복용 복합레진(Beautifil, Z100, Z250, Z350, Gradia X)과 silorane 기질 복합레진 (P90)의 중합수축을 10분 동안 측정하여, 중합수축량, 최대 중합수축률 그리고 최대수축시간을 비교하였다. 복합레진의 중합수축은 제품별로 많은 차이를 보였다. Silorane 기질의 P90복합레진의 중합수축이 1.48%로 가장 낮았고 Beautifil 복합레진의 중합수축이 2.80%로 가장 높았다. Methacrylate 계열의 복합레진 사이에도 중합수축량에 제품별로 유의한 차이를 보였다(p<0.05). 최대 중합수축률은 P90이 0.13%/s로 가장 낮았고 Z100이 0.34%/s로 가장 높았다. 최대 수축시간은 methacrylate기질의 복합레진(2.4-3.1초)에 비해, silorane 기질의 P90 복합레진이 6.7초로 두 배 이상 길었다. 최대중합수축률은 중합수축과 최대수축시간의 역수를 곱한 값과 강한 양의 상관관계를 보였다(R = 0.95).

Keywords

References

  1. Peutzfeld A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105:97-116, 1997. https://doi.org/10.1111/j.1600-0722.1997.tb00188.x
  2. Bragg RR, Ferracane JL. Alternatives in polymerization contraction stress management. Crit Rev Oral Biol Med 15(3):176-184, 2004. https://doi.org/10.1177/154411130401500306
  3. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent. 25:435-440, 1997. https://doi.org/10.1016/S0300-5712(96)00063-2
  4. 이인복. 복합레진 수복과 상아질 접착제의 미해결 문제점과 임상적 중요성. 대한치과보존학회지 46:424-430, 2008.
  5. 박준규, 조병훈, 이인복, 권혁춘, 엄정분. 광조사 강도의 변화에 따른 광중합 복합레진의 중합반응에 관한연구. 대한치과보존학회지 26:86-94, 2001.
  6. Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence of light intensity on polymerization shrinkage and integrity of restoration-cavity interface. Eur J Oral Sci 103:322-326, 1995. https://doi.org/10.1111/j.1600-0722.1995.tb00033.x
  7. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible light-cured materials: methods development. Dent Mater 7:281-287, 1991. https://doi.org/10.1016/S0109-5641(05)80030-2
  8. Miyazaki M, Hinoura K, Onose H, Moore BK. Effects of filler content of light-cured composites on bond strength to bovine dentine. J Dent 19:301-303, 1991. https://doi.org/10.1016/0300-5712(91)90078-D
  9. Venhoven B.A.M., de Gee A.J. and Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomater 14(1):871-875, 1993. https://doi.org/10.1016/0142-9612(93)90010-Y
  10. Palin WM, Fleming GJP, Nathwani H, Burke FJT, Randall RC. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel lowshrink dental composites. Dent Mater 21:324-335, 2005. https://doi.org/10.1016/j.dental.2004.05.005
  11. Feilzer AJ, de Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66:1636-1639, 1987. https://doi.org/10.1177/00220345870660110601
  12. Segura A, Donly KJ. In vitro posterior composite polymerization recovery following hygroscopic expansion. J Oral Rehabil 20:495-9, 1993. https://doi.org/10.1111/j.1365-2842.1993.tb01636.x
  13. Park JK, JH Chang, Lee IB. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling- Dent Mater 24:1501-1505, 2008. https://doi.org/10.1016/j.dental.2008.03.013
  14. Lee MR, Cho BH, Son HH, Um CM, Lee IB. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater 23:288-295, 2007. https://doi.org/10.1016/j.dental.2006.01.025
  15. Sahafi A, Peutzefeld A, Asmussen E. Effect of pulsedelay curing on in vitro wall-to-wall contraction of composite in dentin cavity preparations. Am J Dent 14:295-296, 2001.
  16. Obici AC, Sinhoreti MAC, de Goes MF, Consai S, Sobrinho LC. Effect of the photo-activation method on polymerization shrinkage of restorative composites. Oper Dent 27:192-198, 2002.
  17. Kemp-Scholte CM, Davidson CL. Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res 69:1240-1243, 1990. https://doi.org/10.1177/00220345900690060301
  18. Feilzer AJ, de Gee AJ, Davidson CL. Curing contraction of composites and glass ionomer cements. J Prosthet Dent 59:297-300, 1988. https://doi.org/10.1016/0022-3913(88)90176-X
  19. Weinmann W, Thalacker C, Guggenberg R, Siloranes in dental composites. Dent Mater 21:68-74, 2005. https://doi.org/10.1016/j.dental.2004.10.007
  20. Stansbury JW, Trujillo-Lemon M, Lu H, Ding X, Lin y, Ge J. Conversion-dependent shrinkage stress and strain in dental resins and composites. Dent Mater 21:56-67, 2005. https://doi.org/10.1016/j.dental.2004.10.006
  21. Papadogiannis D, Kakaboura A, Palaghias G, Eliades G. Setting characteristics and cavity adaptation of lowshrinking resin composites. Dent Mater 25:1509-1516, 2009. https://doi.org/10.1016/j.dental.2009.06.022
  22. Miletic V, Ivanovic V, Dzeletovic B, Lezaja M. Temperature changes in Silorane-, Ormocer-, and Dimethacrylate-based composites and pulp chamber roof during light-curing. J Esthet Restor Dent 21:122-132, 2009. https://doi.org/10.1111/j.1708-8240.2009.00244.x
  23. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J of Oral Rehabil 32: 304-314, 2005. https://doi.org/10.1111/j.1365-2842.2004.01414.x
  24. Ellakwa A, Cho NK, Lee IB. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater 23:1229-1235, 2007. https://doi.org/10.1016/j.dental.2006.11.004
  25. 이인복, 복합레진의 초기 동적 체적 중합수축의 실시간 측정-새로운 측정장치의 개발에 대한 소고-. 대한치과보존학회지 26:134-140, 2001
  26. Chappelow CC, Pinzino CS, Power MD, Eick JD. Photo cured epoxy/SOC matrix resin systems for dental composites. Polymer Reprints 38:90-91, 1997.
  27. Cadenaro M, Biasotto M, Scuor N, Breschi L, Davidson CL, Lenarda R, Assessment of polymerization contraction stress of three composite resins. Dent Mater 24:681-685, 2008. https://doi.org/10.1016/j.dental.2007.06.031
  28. Ferracane JL, Developing a more complete understanding of stresses produced in dental composites during polymerization. Dent Mater 21:36-42, 2005 https://doi.org/10.1016/j.dental.2004.10.004

Cited by

  1. A new method to measure the linear polymerization shrinkage of composites using a particle tracking method with computer vision vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.180
  2. Evaluation of polymerization shrinkage stress in silorane-based composites vol.36, pp.3, 2011, https://doi.org/10.5395/JKACD.2011.36.3.188