DOI QR코드

DOI QR Code

On modeling of fire resistance tests on concrete and reinforced-concrete structures

  • Received : 2009.11.01
  • Accepted : 2009.12.17
  • Published : 2010.08.25

Abstract

In this work we first review the statistical data on large fires in urban areas, presenting a detailed list of causes of fires, the type of damage to concrete and reinforced concrete structures. We also present the modern experimental approach for studying the fire-resistance of different structural components, along with the role of numerical modeling to provide more detailed information on quantifying the temperature and heat flux fields. In the last part of this work we provide the refined models for assessment of fire-induced damage in structures built of concrete and/or reinforced-concrete. We show that the refined models of this kind are needed to provide a more thorough explanation of damage and to complete the damage assessment and post-fire evaluations.

Keywords

Acknowledgement

Supported by : French Ministry of Research

References

  1. ASTM 119-81 (1981), Standard methods of fire of building construction and material, National Bureau of Standards, ANSI Fire Protection Group and American Society for Testing and Materials, Philadelphia.
  2. Baum, H.R., Cassel, K.W., McGrattan, K.B. and Rehm, R.G. (1995), "Gravity-current transport in buildings fires", International Conference on Fire Research and Engineering, Orlando, Florida, USA.
  3. Bazant, Z.P. and Kaplan, M.F. (1996), Concrete at high temperature: material properties and mathematical modeling, Longman Harlow, Adison Wesley.
  4. Beard, A., Drysdale, D., Holborn, P. and Bishop, S. (1993), "Cofiguration factor for radiation in a tunnel as partial cylinder", Fire Technol., 29, 281-288. https://doi.org/10.1007/BF01152111
  5. Bendelius, A.G.. (2002), "Tunnel fire and life safety within the world road association PIARC", The 28th ITA General Assambly, Sydney, Australia.
  6. Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotropic continuum-discrete damage model capable of representing localized failure. Part I : theoretical formulation and numerical implementation", Int. J. Eng. Comput., 26(1-2), 100-127.
  7. Briollay, H. and Chasse, P. (1994), "Validating and optimazing 2D and 3D computer simulations for the offenegg tunnel fire test", Centre d'Etudes des Tunnels, Bron Cedex, France.
  8. Britter, R.E. and Neophytou, M.K.A. (2005), "A simple model for the movement of fire smoke in a confined tunnel", Pure. Appl. Geophysics., 162(10), 1941-1954. https://doi.org/10.1007/s00024-005-2699-2
  9. Britter, R.E. and Woodburn, P.J. (1996), "CFD-simulations of a tunnel fire - part one", Fire Safety J., 26(1), 35- 62. https://doi.org/10.1016/0379-7112(96)00018-5
  10. Brunello, P., Schrefler, B.A., Gawin, D., Majorana, C.E. and Pesavento, F. (2002), "Concrete at high temperature with application to tunnel fire", Comput. Mech., 29(1), 43-51. https://doi.org/10.1007/s00466-002-0318-y
  11. Chasse, P. (1993), "Sensitivity study of different modelling techniques for the computer simulation of tunnel fire", The 1st CFDS International User Conference, Oxford, UK.
  12. Chow, W.K. and Kot, H.T. (1989), "Hotel fires in Hong Kong", Int. J. Hospitality Manage., 8(4), 271-281. https://doi.org/10.1016/0278-4319(89)90004-2
  13. Colliat, J.B., Ibrahimbegovic, A. and Davenne, L. (2005), "Saint-Venant multi-surface plasticity model in strain space and in stress resultants", Int. J. Eng. Comput., 22, 536-557.
  14. Dominguez, N., Brancherie, D., Davenne, L. and Ibrahimbegovic, A. (2005), "Prediction of crack pattern distribution in reinforced concrete by coupling a strong discontinuity model of concrete cracking and a bondslip of reinforcement model", Int. J. Eng. Comput., 22, 558-582.
  15. Dominguez, N., Fernandez, M.A. and Ibrahimbegovic, A. (2010), "Enhanced solid element for modeling or reinforced-concrete structures with bond slip", Comput. Concrete, 7(4).
  16. Edwards, J.C. and Hwang, C.C. (2005), "The critical ventilation velocity in tunnel fires - a cumputer simulation", Fire Safety J., 40(3), 213-244. https://doi.org/10.1016/j.firesaf.2004.11.001
  17. Fay, J.A. (2003), Spills and fires from LNG and oil tankers in Boston harbour, Cambridge, MA., USA.
  18. Ferziger, H. and Peric, M. (2001), Computational methods for fluid mechanics, Berlin, Springer Verlag.
  19. Gabay, D. (2002), "Fire safety: a short history in the Paris-subway", The 28th ITA General Assambly, Sydney, Australia.
  20. Gao, P.Z., Liu, S.L., Chow, W.K. and Fong, N.K. (2004), "Large eddy simulations for studying tunnel smoke ventilation", Tunnel. Underground Space Tech., 19(6), 577-588. https://doi.org/10.1016/j.tust.2004.01.005
  21. Gawin, D., Pesavento, D. and Schrefler, B.A. (2004), "Modeling of deformations of high strength concrete at elevated temperatures", Mater. Struct., 27, 218-236.
  22. Gutierrez-Montes, C., Sanmiguel-Rojas, E., Kaiser, A.S. and Viedma, A. (2007), "Numerical model and validation experiments of atrium enclosure fire in a new fire test facility", Build. Environ, 43(11), 1912-1928.
  23. Holmstedt, G., Bengston, S. and Tuovinen, H. (1996), "Sensitivity calculations of tunnel fires using CFD", Fire Safety J., 1, 99-119.
  24. Ibrahimbegovic, A. (2009), Nonlinear solid mechanics: theoretical formulations and finite element solution methods, Springer, Berlin.
  25. Ibrahimbegovic, A. and Brancherie, D. (2003), "Combined hardening and softening constitutive model for plasticity: precursor to shear slip line failure", Comput. Mech., 31, 88-100. https://doi.org/10.1007/s00466-002-0396-x
  26. Ibrahimbegovic, A., Boulkertous, A., Davenne, L. and Brancherie, D. (2010), "Modelling of RC structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure", Int. J. Numer. Meth. Eng. (in press)
  27. Ibrahimbegovic, A., Colliat, J.B. and Davenne, L. (2005), "Thermomechanical coupling in folded plates and nonsmooth shells", Comput. Method. Appl. M., 194, 2686-2707. https://doi.org/10.1016/j.cma.2004.07.052
  28. Jongen, T. and Gatski, T.B. (2000), "Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows", Progress Aerospace Sci., 36(8), 655-682. https://doi.org/10.1016/S0376-0421(00)00012-9
  29. Kassiotis, C., Colliat, J.B., Ibrahimbegovic, A. and Matthies, H. (2009), "Multiscale in time and stability analysis of operator split solution procedure applied to thermomechanical problems", Int. J. Eng. Comput., 26, 205-223.
  30. Kucerova, A., Brancherie, D., Ibrahimbegovic, A., Zeman, J. and Bittnar, Z. (2009), "Novel anisotropic continuumdiscrete damage model capable of representing localized failure of massive structures. Part II: identification from tests under heterogeneous stress field", Int. J. Eng. Comput., 26, 128-144.
  31. Kumar S. and Cox, G. (1986), "Mathematical modelling of fires in tunnels - validation of JASMINE", Transport and Research Laboratory, Crowthorn, UK.
  32. Kumar, S. and Cox, G. (1985), "Mathematical modelling of fires in tunnels", The 5th International Symposium on the Aerodynamics and Ventilation of Vehicle-Tunnels.
  33. Kumar, S. and Cox, G. (1988), "Radiation and surface roughness effects in the numerical modelling of enclosure fires", Fires Safety Science - The 2nd International Conference.
  34. Kunsch, J.P. (2002), "Simple model for control of fire gases in a ventilated tunnel", Fire Safety J. 37(1), 67-81. https://doi.org/10.1016/S0379-7112(01)00020-0
  35. Leitner, A. (2001), "The fire catastrophe in the Tauern-tunnel", Tunnel. Underground Space Technol., 16(3), 217-223. https://doi.org/10.1016/S0886-7798(01)00042-6
  36. Leupi, C. (2005), "Numerical modeling of cohesive sediment transport and bed morphology in estuaries", La faculte sciences et techniques de l'ingenieur, EPFL, Lausanne.
  37. Liu, S.L., Gao, P.Z., Chow, W.K. and Fong, N.K. (2004), "Large eddy simulations for studying tunnel smoke ventilation", Tunnel. Underground Space Technol., 19, 577-588. https://doi.org/10.1016/j.tust.2004.01.005
  38. Magnussen, B.F. and Hjertager. B.H. (1976), "On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion", The 16th international symposium on combustion, Pittsburgh, USA.
  39. Malin, M.R. and Markatos, N.C. (1982), "Mathematical modelling of buoyancy-induced smoke flow in enclosures", Int. J. Heat Mass Transfer. 25, 63-75. https://doi.org/10.1016/0017-9310(82)90235-6
  40. McGrattan, K.B. (2002), Numerical Simulation of the howard street tunnel fire, NIST, Gaithersburg, USA.
  41. Miles, D. and Kumar, S. (2004), "Computer modelling to assess the benefits of road tunnel fire safety measures", Proceedings The InFlam, Edinburgh, UK.
  42. Miles, D., Kumar, S. and Andrews, R.D. (1999), "Validation of a CFD model for fires in the memorial tunnel", First International conference on Tunnel Fires, Lyon, France.
  43. Nielsen, C.V., Pearce, C.J. and Bicanic, N. (2004), "Improved phenomenological modeling for transient thermal strains for concrete at high temperatures", Comput. Concrete, 1(2), 189-209. https://doi.org/10.12989/cac.2004.1.2.189
  44. Rejtman, A. (1985), "Prtotiv pozarnov normirovanie v stroitelstve", Stojizdat, Moscow.
  45. Sawley, M. and Drotz, A. (2003), SOCATOP, Lausanne, Switzerland.
  46. Schrefler, B.A., Pesavento, F., Sanavia, L. and Gawin, D. (2005), "Multi-physics problems in thermo-hydro-mechanical analysis of partially saturated geomaterials", Ibrahimbegovic A., B. Brank (eds.), Multi-physics and multi-scale computer models in nonlinear analysis and optimal design of engineering structures under extreme conditions, IOS Press, Amsterdam, (ISBN 1-58803-479-0), 1-407.
  47. Simulation of fires in tunnels under construction, SINTEF: Trondheim, Norwaqy. 2005.
  48. Tan, G.L. (2002), "Fire fighting in tunnels", Tunnel. Underground Space Technol., 17(2), 179-180. https://doi.org/10.1016/S0886-7798(02)00021-4
  49. Tuovinen, H. (1994), "Validation of ceiling jet flows in a large corridor with vents using the CFD code JASMINE", Technol., 32.
  50. Ulm, F.J., Coussy, O. and Bazant, Z.P. (1999), "The chunnel fire: Part I: chemoplastic softening in rapidly heated concrete", J. Eng. Mech. - ASCE, 125, 378-385.
  51. Versteeg, H.K. and Malalasekera, W. (1995), An introduction to computational fluid dynamics, London.
  52. Vidmar, P. and Petelin, S. (2006), "Analysis of the effect of an extrenal fire on the safety operation of an powerplant", Fire Safety J., 41(6), 486-490. https://doi.org/10.1016/j.firesaf.2006.04.003
  53. Vladimirova, N. (2006), Model flames in the Boussinesq limit, ASC/Flash Center, Dept. of Astronomy and Astrophysics, The University of Chicago, IL 60637, Chicago, USA.
  54. Wighus, R. (1994), Fire at sea-surface, SINTEF, Spitzbergen, Norway.
  55. Zhang, W., Hamer, A., Klassen, M., Carpenter, D. and Roby, R. (2002), "Turbulence statistics in a fire room model by large eddy simulation", Fire Safety J., 37(8), 721-752. https://doi.org/10.1016/S0379-7112(02)00030-9

Cited by

  1. Continuum damage model for thermo-mechanical coupling in quasi-brittle materials vol.50, 2013, https://doi.org/10.1016/j.engstruct.2012.10.007
  2. Model for localized failure with thermo-plastic coupling: Theoretical formulation and ED-FEM implementation vol.127, 2013, https://doi.org/10.1016/j.compstruc.2012.12.013
  3. Bond slip model for the simulation of reinforced concrete structures vol.39, 2012, https://doi.org/10.1016/j.engstruct.2012.02.007
  4. Effect of hybrid fibers on flexural performance of reinforced SCC symmetric inclination beams vol.22, pp.2, 2010, https://doi.org/10.12989/cac.2018.22.2.209
  5. Numerical investigation on punching shear of RC slabs exposed to fire vol.23, pp.3, 2019, https://doi.org/10.12989/cac.2019.23.3.217
  6. Effect of cooling rate on the post-fire behavior of CFST column vol.23, pp.4, 2010, https://doi.org/10.12989/cac.2019.23.4.281
  7. Thermo-mechanical analysis of reinforced concrete slab using different fire models vol.9, pp.2, 2010, https://doi.org/10.12989/csm.2020.9.2.163
  8. An Equivalent Method for Bar Slip Simulation in Reinforced Concrete Frames vol.18, pp.8, 2010, https://doi.org/10.1007/s40999-020-00507-6
  9. Bond behavior of PP fiber-reinforced cinder concrete after fire exposure vol.26, pp.2, 2010, https://doi.org/10.12989/cac.2020.26.2.115
  10. Residual load carrying capacity of reinforced concrete cylinders after heating at elevated temperature vol.2, pp.10, 2020, https://doi.org/10.1007/s42452-020-03483-7
  11. Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition vol.27, pp.4, 2010, https://doi.org/10.12989/cac.2021.27.4.355