Bioleaching of Galena by Indigenous Bacteria at Room Temperature

상온에서 토착박테리아를 이용한 방연석의 용출 특상

  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research of Natural Science, Gyeongsang National University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University)
  • 박천영 (조선대학교 에너지자원공학과) ;
  • 김순오 (경상대학교 지구환경과학과) ;
  • 김봉주 (조선대학교 에너지자원공학과)
  • Received : 2010.11.24
  • Accepted : 2010.12.17
  • Published : 2010.12.30

Abstract

This study was carried out to leach valuable metals from galena using indigenous bacteria with no optimum pH conditions at room temperature. Even in these conditions, the rod-shaped indigenous bacteria, ranging from $0.4{\times}0.2{\mu}m$ to $0.5{\times}1.7{\mu}m$, were attached to the surface of the galena. For the 19 days of the bioleaching experiment, the content of Ph, Fe, Zn ions was found to be 347, 222 and 1.7 times higher than that of the control leaching agent, respectively. Numerous hexagonal column crystals were observed on the surface of galena. Those crystals may be formed from the biooxidation of galena by the indigenous bacteria. XRD analysis showed the peaks of anglesite observed in the bioleached galena. It is expected that more valuable elements can be leached out of the galena, if the bacteria is used under optimum pH and temperature conditions in future bioleaching experiments.

방연석으로부터 유용금속이온을 용출시키기 위하여 토착박테리아를 실험실온도에서 최적의 pH 조건이 아닌 상태로 용출실험을 실시하였다. 이와 같은 조건에서도 $0.4{\times}0.2{\mu}m$에서 $0.5{\times}1.7{\mu}m$ 범위의 막대 모양 박테리아들이 방연석 표면에 부착하였다. 미생물 용출실험 19일 후에, Pb, Fe, Zn 이온 함량이 비교시료에서 보다 박테리아 시료에서 각각 약 347, 222, 1.7배 이상으로 높게 용출되었다. 수많은 육각형 주상의 결정들이 방연석의 표변에 형성된 것이 관찰되었으며, 이들 결정들은 토착 박테리아의 미생물학적 산화작용에 의하여 방연석으로부터 생성된 것으로 생각된다. XRD 분석에서, 황산연광에 해당되는 회절선이 방연석 시료에서 관찰되었다. 만약 박테리아가 최적으로 생존할 수 있는 pH 조건과 온도 조건을 조성해 준다면 더 많은 유용금속 이온이 방연석으로부터 용출 될 것으로 기대된다.

Keywords

References

  1. 박천영, 김순오, 김봉주 (2010) ${42^{\circ}C}$에서 토착호산성박테 리아의 황철석 표면에 대한 선택적 부착과 용출특성. 자원환경지질, 43, 109-121.
  2. 박천영, 조강희 (2010) 토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출. 한국광물학회지, 23, 251-265.
  3. 한오형, 박천영, 조강희 (2010) 토착호산성 박테리아를 이용한 황동석 정광에 대한 생물학적 용출 특성-상온에서의 칼럼 용출-. 한국지구시스템공학회지, 47, 678-689.
  4. Ahonen, L. and Tuovinen, O.H. (1995) Bacterial leaching of complex sulfide ore samples in bench-scale column reactors. Hydrometallurgy, 37, 1-21. https://doi.org/10.1016/0304-386X(94)00011-Q
  5. Ahonen, L., Hiltunen, P., and Tuovinen, O.H. (1986) The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores, In: Lawrence, R.W., Branion, R.M.R. and Ebner, H.G. (eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 13-22.
  6. Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of percious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, 30, 99-111. https://doi.org/10.1016/0301-7516(90)90068-A
  7. Baker, B.J. and Banfield, J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  8. Bhatti, T.M., Bigham, J.M., Carlson, L., and Tuovinen, O.H. (1993) Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans, Applied and Environmental Microbiology, 59, 1984-1990.
  9. Blancarte-Zurita, M.A., Branion, R.M.R., and Lawrence, R.W. (1986) Application of a shrinking particle model to the kinetics of microbiological leaching. Fundamental and Applied Biohydrometallurgy Proceeding, International Symposium on Biohydrometallurgy, 243-253.
  10. Boon, M. (2001) The mechanism of direct(tm) and indirect bacterial oxidation of sulfide minerals. Hydrometallurgy, 62, 67-70. https://doi.org/10.1016/S0304-386X(01)00182-7
  11. Brock, T.D. (1986) Introduction: an overview of the thermophiles. In: Brock, T.D. (eds.), Thermophiles, John Wiley & Sons, 1-16.
  12. Chaudhury, G.R., Sukla, L.B., and Das, R.P. (1985) Kinetics of bio-chemical leaching of sphalerite concentrate. Metallurgical Transaction B, 16B, 667-670.
  13. Craig, J.R. and Vaughan, D.J. (1981). Ore Microscopy and Ore Petrography. John Wiley & Sons, 406p.
  14. Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. Macmillan Publishing Company, 626p.
  15. Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (1995b) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 508-514. https://doi.org/10.1139/m95-067
  16. Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (995a) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 578-584. https://doi.org/10.1139/m95-077
  17. Giaveno, A., Lavalle, L., Chiacchiarini, P., and Donati, E. (2007) Airlift reactors: characterization and applications in biohydrometallurgy. In: Donati, E.R. and Sand, W.(eds.), Microbial Processing of Metal Sulfides, Springer, 169-191.
  18. Gomez, C., Blazquez, M.L., and Ballester, A. (1999) Bioleaching of Spanish complex sulphide ore bulk concentrate. Minerals Engineering, 12, 93-106. https://doi.org/10.1016/S0892-6875(98)00122-8
  19. Kingma, Jr. J.G. and Silver, M. (1980) Growth of ironoxidizing Thiobacilli in the presence of chalcopyrite and galena. Applied and Environmental Microbiology, 39, 635-641.
  20. Konhauser, K. (2007) Introduction to Geomicrobiology, Blackwell Publishing, 425p.
  21. Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice Hall, 600p.
  22. Lottermoser, B. (2007) Mine Wastes. Springer, 304p.
  23. Malouf, E.E. and Prater, J.D. (1961) Role of bacteria in the alteration of sulfide minerals. Journal of Metals, 13, 353-356.
  24. Marsden, J. and House, I. (1992) The chemistry of gold extraction. Ellis Horwood, 597p.
  25. Mehta, A.P. and Murr, L.E. (1982) Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of Thiobacillus ferrooxidans (${30^{\circ}C}$) and a thermophilic microogram (${55^{\circ}C}$). Biotechnology and Bioengineering, 24, 919-940. https://doi.org/10.1002/bit.260240413
  26. Mousavi, S.M., Taghmaei, S., Vossoughi, M., Jafari, A. and Hoseini, S.A. (2005) Comparation of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80, 139-144. https://doi.org/10.1016/j.hydromet.2005.08.001
  27. Natarajan, K.A. and Iwasaki, I. (1983) Role of galvanic interactions in the bioleaching of Duluth gabbro coppernickel sulfides. Separation Science and Technology, 18, 1095-1111. https://doi.org/10.1080/01496398308059919
  28. Ohmura, N., Kitamura, K., and Saiki, H. (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied Environmental Microbiology, 59, 4044-4050.
  29. Ramdohr, P. (1980) The ore minerals and their intergrowths. Pergamon Press, 1205p.
  30. Rawlings, D.E., Dew, D., and du Plessis, C. (2003) Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology, 21, 38-44. https://doi.org/10.1016/S0167-7799(02)00004-5
  31. Renman, R., Jiankang, W., and Jinghe, C. (2006) Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy, 83, 77-82. https://doi.org/10.1016/j.hydromet.2006.03.048
  32. Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology, 47, 19-29. https://doi.org/10.1016/S0168-6496(03)00221-6
  33. Sampson, M.I., Van der Merwe, J.W., Harvey, T.J., and Bath, M.D. (2005) Testing the ability of a low grade sphalerite concentrate to achieve autothermaloty during biooxidation heap leaching. Minerals Engineering, 18, 427-437. https://doi.org/10.1016/j.mineng.2004.07.001
  34. Sand, W., Gehrke, T., Hallmann, R., and, A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism- a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961-966. https://doi.org/10.1007/BF00166909
  35. Sand, W., Gehrke, T., Jozsa, P.G., and Schippers, A. (2001) (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching. Hydrometallurgy, 59, 159-175. https://doi.org/10.1016/S0304-386X(00)00180-8
  36. Silver, M. and Torma, A.E. (1974) Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Canadian Journal of Microbiology, 20, 141-147. https://doi.org/10.1139/m74-023
  37. Silverman, M.P. and Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. Advan. Appl. Microbiol., 6, 153-206. https://doi.org/10.1016/S0065-2164(08)70626-9
  38. Tipre, D.R. and Dave, S.R. (2004) Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy, 75, 37-43. https://doi.org/10.1016/j.hydromet.2004.06.002
  39. Torma, A.E. and Bosecjer, K. (1982) Bacterial leaching. Progress in Industrial Microbiology, 16, 77-118.
  40. Torma, A.E. and Subramanian, K.N. (1974) Selective bacterial leaching of a lead sulfide concentrate. International Journal of Mineral Processing, 1, 125-134. https://doi.org/10.1016/0301-7516(74)90008-8
  41. Tributsch, H. (2001) Direct versus indirect bioleaching. Hydrometallurgy, 59, 177-185. https://doi.org/10.1016/S0304-386X(00)00181-X
  42. Tuovinen, O.H. (1990) Biological fundamentals of mineral leaching processes. In: Ehrlich, H.L. and Brierley, C.L. (eds.), Microbial Mineral Recovery, McGraw-Hill Publishing Company, 55-77.
  43. Tuovinen, O.H., Bhatti, T.M., Bigham, J.M., Hallberg, K.B., Garcia, Jr., O., and Lindstrom, E.B. (1994) Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Applied and Environmental Microbiology, 60, 3268-3274.
  44. Uytenbogaardt, W. and Burke, E.A.J. (1973) Tables for Microscopic Identification of Ore Minerals. Elsevier Scientific Publishing Company, 430p.
  45. Watling, H.R. (2006) The bioleaching of sulfide minerals with emphasis on copper sulfide-a review. Hydrometallurgy, 84, 81-108. https://doi.org/10.1016/j.hydromet.2006.05.001
  46. Watling, H.R., Elliot, A.D., Maley, M., van Bronswijk, W., and Hunter, C. (2009) Leaching of a low-grade, copper-nickel sulfide ore. 1. Key parameters impacting on Cu recovery during column bioleaching. Hydrometallurgy 97, 204-212. https://doi.org/10.1016/j.hydromet.2009.03.006
  47. Yelloji Rao, M.K., Natarajan, K.A., and Somasundaran, P. (1992) Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena. Mineral & Metallurgical Processing, 9, 95-100.