Thermoelectric Properties of Bi-Te Thin Films Processed by Coevaporation

동시증착법으로 형성한 Bi-Te 박막의 열전특성

  • Choi, Young-Nam (Department of Materials Science and Engineering, Hongik University) ;
  • Kim, Min-Young (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae-Sung (Department of Materials Science and Engineering, Hongik University)
  • 최영남 (홍익대학교 공과대학 신소재공학과) ;
  • 김민영 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2010.12.09
  • Accepted : 2010.12.20
  • Published : 2010.12.30

Abstract

Bi-Te films were processed by coevaporation of Bi and Te dual sources with variations of the mole ratio of the Bi and Te evaporation sources, and thermoelectric properties of the coevaporated Bi-Te films were characterized. The coevaporated Bi-Te films were n-type semiconductors and exhibited Seebeck coefficients of $-60{\sim}-80{\mu}V/K$. The Terich Bi-Te film, processed with Bi and Te dual sources of 30 mol% Bi : 70 mol% Te ratio, exhibited a power factor of $5{\times}10^{-4}W/m-K^2$. On the other hand, a power factor of $17.7{\times}10^{-4}W/m-K^2$ was obtained for the Bi-rich film coevaporated using Bi and Te dual sources of 90 mol% Bi : 10 mol% Te ratio.

Bi 증착원과 Te 증착원의 몰비를 변화시키며 동시증착법으로 Bi-Te 박막을 형성 후, Bi 증착원과 Te 증착원의 몰비에 따른 Bi-Te 박막의 열전특성을 분석하였다. 동시증착법으로 형성한 Bi-Te 박막은 n형 반도체로서, $-60{\sim}-80{\mu}V/K$의 Seebeck 계수를 나타내었다. Bi 증착원의 양이 30 mol%인 조건으로 동시 증착하여 Te 과잉 조성인 박막은 $5{\times}10^{-4}W/m-K^2$의 출력인자를 나타내었으며, Bi 증착원의 양이 90 mol%인 조건으로 동시 증착하여 Bi 과잉 조성인 박막은 $17.7{\times}10^{-4}W/m-K^2$의 출력인자를 나타내었다.

Keywords

References

  1. D. M. Rowe, CRC Handbook of Thermoelectrics, pp.441-609, CRC Press, Boca Raton (1995).
  2. M. A. Ryan and J-P. Fleurial, "Where there is heat, there is a way: thermal to electric power conversion using thermoelectric microconverters", Electochem. Soc. Interface, 11, 30 (2002).
  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-thermoelectric performance of nanostructured Bismuth Antimony Telluride bulk alloys", Science, 320, 634 (2008). https://doi.org/10.1126/science.1156446
  4. B. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouki, and A. Majumdar, "Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors", Phys. Rev. Lett., 96, 45901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  5. X. A. Fan, J. Y. Yang, Z. Xie, K. Li, W. Zhu, X. K. Duan, C. J. Xiao and Q. Q. Zhang, J. Phys. "Bi2Te3 hexagonal nanoplates and thermoelectric properties of n-type Bi2Te3 nanocomposites", D: Appl. Phys., 40, 5975 (2007). https://doi.org/10.1088/0022-3727/40/19/029
  6. X. B. Zhao, S. H. Yang, Y. Q. Cao, J. L. Mi, Q. Zhang, and T.J. Zhu, "Synthesis of nanocomposites with improved thermoelectric properties", Journal of Electronic Materials, 38(7), 1017 (2009). https://doi.org/10.1007/s11664-009-0698-2
  7. K. Rajasekar, L. Kungumadevi, A. Subbarayan and R. Sathyamoorthy, "Structural and dc conduction studies on PbTe thin films", Ionics, 14, 69 (2008). https://doi.org/10.1007/s11581-007-0146-3
  8. J. P. Fleurial, G. J. Snyder, J. A. Herman, P. H. Giauque, W. M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa and M. A. Nicolet, "Thick-film thermoelectric microdevices", Proc. 18th Int. Conf. on Thermoelectrics (International Society of Thermoelectrics, 1999), 294 (1999).
  9. J. Nurnus, H. Bottber and A. Lambrech, "Thermoelectric micro devices : interplay of highly effective thin film materials and technological compatibility", Proc. 22nd Int. Conf. on Thermoelectrics (International Society of Thermoelectrics 2003), 655 (2003).
  10. K. Tittes, A. Bund, W. Plieth, A. Bentien, S. Paschen, M. Plotner, H. Grafe, "Electrochemical deposition of $Bi_{2}Te_{3}$ for thermoelectric microdevices", and W. H. Fischer: J. Solid State Electrochem., 7, 714 (2003). https://doi.org/10.1007/s10008-003-0378-8
  11. L. M. Goncalves, C. Couto, P. Alpuim, D. M. Rowe, and J. H. Correia, "Thermoelectric microstructures of $Bi_{2}Te_{3}/Sb_{2}Te_{3}$ for a self-calibrated micro-pyrometer", Sensors and Actuators, A130-131, 346 (2006).
  12. J. R. Lim, G. J. Snyder, C.-K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, Proc, "Thermoelectric micro device fabrication process and evaluation at the Jet Propulsion Laboratory (JPL)", Proc. 21th International Conference on Thermoelectric, Long Beach, 535, International Thermoelectric Society (2002).
  13. Y. Zhang, J. Christofferson, A. Shakouri, G. Zeng, J. E. Bowers, and E. T. Croke, "On-chip high speed localized cooling using superlattice microrefrigerators", IEEE Trans. Comp. Packag. Technol., 29, 395 (2006). https://doi.org/10.1109/TCAPT.2006.875884
  14. Y. H. Yeo, M. Y. Kim, and T. S. Oh, "Thermoelectric characteristics of the p-type $(Bi,Sb)_{2}Te_{3}$ nano-bulk hot-pressed with addition of $ZrO_{2}$ as nano inclusions", J. Microelectron. Pack. Soc., 17(3), 51 (2010).
  15. D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric properties of the n-type $Bi_{2}(Te,Se)_{3}$ processed by hot pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
  16. K. Rajasekar, L. Kungumadevi, A. Subbarayan, and R. Sathyamoorthy, "Thermal sensors based on $Sb_{2}Te_{3}$ and $(Sb_{2}Te_{3})_{70}(Bi_{2}Te_{3})_{30}$ thin films", Ionics, 14, 69 (2008). https://doi.org/10.1007/s11581-007-0146-3
  17. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, B. Aboulfarah, and A. Mzerd, J. Mater, "Electrical and thermoelectrical properties of $Sb_{2}Te_{3}$ prepared by the metalorganic chemical vapor deposition technique", J. Mater. Sci. Lett., 18, 541 (1999). https://doi.org/10.1023/A:1006670327086
  18. H. Zou, D. M. Rowe, and G. Min, "Preparation and characterization of p-type Sb2Te3 and n-type $Bi_{2}Te_{3}$ thin films grown by coevaporation", J. Vac. Sci. Technol. A, 19(3), 899, (2001). https://doi.org/10.1116/1.1354600
  19. L. M. Goncalves, J. G. Rocha, J. H. Correia and C. Couto, "Control of the deposition ratio of $Bi_{2}Te_{3}$ and $Sb_{2}Te_{3}$ in a vacuum evaporator for fabrication of Peltier elements", Proc. "IEEE International symposium on industrial electronics", 2773 (2006).
  20. H. J. Lee, H. Ni, D. T. Wu, and Ainissa G. Ramirez, "Grain size estimations from the direct measurement of nucleation and growth", Appl. Phys. Lett., 87, 124102 (2005). https://doi.org/10.1063/1.2053348
  21. M. Jaboyedoff, B. Kubler, And P. Thelin, "An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite", Clay Minerals, 34, 601 (1999). https://doi.org/10.1180/000985599546479
  22. L. M. Goncalves, C. Couto, P. Alpuim, A. G. Rolo, F. Volklein, J. H. Correia, "Optimization of thermoelectric properties on $Bi_{2}Te_{3}$ thin films deposited by thermal co-evaporation", Thin Solid Films, 518, 2816 (2010). https://doi.org/10.1016/j.tsf.2009.08.038
  23. M. Takahashi, M. Kojima, and S. Sato, "Electric and thermoelectric properties of electrodeposited bismuth telluride $(Bi_{2}Te_{3})$ films", Journal of Applied Physics, 96, 5582 (2004). https://doi.org/10.1063/1.1785834
  24. T. S. Oh, D. B. Hyun and N. V. Kolomoets, "Thermoelectric properties of p-type $(Bi_{2}Te_{3})_{x}(Sb_{2}Te_{3})_{1x}$ prepared via bulk mechanical alloying and hot pressing", Scripta Mater., 42, 849 (2000). https://doi.org/10.1016/S1359-6462(00)00302-X
  25. H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K. H. Schlereth, "New thermoelectric components using microsystem technologies", J. Microelectromech. Syst., 13, 414 (2004). https://doi.org/10.1109/JMEMS.2004.828740
  26. L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the Bismuth-Tellurium and Antimony-Tellurium systems", J. Appl. Phys., 97, 114903 (2005). https://doi.org/10.1063/1.1914948
  27. M. Y. Kim, T. S. Oh, and J. S. Kim, "Annealing behavior of $Bi_{2}Te_{3}$ thermoelectric semiconductor electrodeposited for nanowire applications", Journal of the Korean Physics Society, 50, 670 (2007). https://doi.org/10.3938/jkps.50.670
  28. M. Y. Kim and T. S. Oh, "Effects of annealing in a reduction ambient on thermoelectric properties of the thin films processed by vacuum evaporation", J. Microelectron. Packag. Soc., 15(3), 1 (2008).
  29. Y. Kim, A. DiVenere, C. K. L. Wong, J. B. Ketterson, S. Cho, and J. R. Meyer, "Structural and thermoelectric transport properties of $Sb_{2}Te_{3}$ thin films grown by molecular beam epitaxy", J. Appl. Phys., 91, 715 (2002). https://doi.org/10.1063/1.1424056
  30. D. D. Frari, S. Diliberto, N. Stein, C. Boulanger, and J.-M. Lecuire, "Comparative study of the electrochemical preparation of $Bi_{2}Te_{3}$, $Sb_{2}Te_{3}$, and $(Bi_{x}Sb_{1-x})_{2}Te_{3}$ films", Thin Solid Films, 483, 44 (2005). https://doi.org/10.1016/j.tsf.2004.12.015
  31. N. G. Stoltz and G. J. Snyder, "Effects of annealing electrodeposited bismuth telluride films", Proc. 21th International Conference on Thermoelectrics, Long Beach, 28, International Thermoelectric Society (2002).