DOI QR코드

DOI QR Code

Solid-state metathetic synthesis of MWO4 (M=Zn, Co) particles assisted by microwave irradiation

  • Lim, Chang-Sung (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2010.11.07
  • Accepted : 2010.12.03
  • Published : 2010.12.31

Abstract

Metathetic route for the $MWO_4$ (M=Zn, Co) particles is a simple method of synthesis and a viable alternative method in a short time. $MWO_4$ (M=Zn, Co) particles were synthesized using solid-state metathetic (SSM) method with microwave irradiation. The $MWO_4$ (M=Zn, Co) particles were formed completely at $600^{\circ}C$ for 3 h. The crystallization process, thermal decomposition and morphology of the $MWO_4$(M= Zn, Co) particles were evaluated. The characteristics of the SSM reaction and the formation of a high lattice energy by-product NaCl were discussed.

Keywords

References

  1. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami and P. Fornasiero, "Synthesis, characterization and photo catalysis performance of transition metal tungstate", Chem. Phy. Lett. 498 (2010) 113. https://doi.org/10.1016/j.cplett.2010.08.026
  2. S.M. Montemayor and A.F. Fuentes, "Electrochemical characteristics of lithium insertion in several 3D metal tungstates ($MWO_4$, M=Mn, Co, Ni and Cu) prepared by aqueous reactions", Cer. Int. 30 (2004) 393.
  3. X. Cao, W. Wu, N. Chen, Y. Peng and Y. Liu, "An ether sensor utilizing cataluminescence on nanosized $ZnWO_4$", Sensors and Actuators B137 (2009) 83.
  4. C. Yu and J.C. Yu, "Sonochemical fabrication, characterization and photocatalytic properties of $Ag/ZnWO_4$ nanorod catalyst", Mat. Sci. Eng. B 164 (2009) 16. https://doi.org/10.1016/j.mseb.2009.06.008
  5. S. Rajagopal, V.L. Bekenev, D. Nataraj, D. Mangalaraj and O.Y. Khyzhun, "Electronic structure of $FeWO_4$ and $CoWO_4$ tungstates: First-principles FP-LAPW calculations and X-ray spectroscopy studies", J. Alloys and Compounds 496 (2010) 61. https://doi.org/10.1016/j.jallcom.2010.02.107
  6. P.K. Pandey, N.S. Bhave and R.B. Kharat, "Characterization of spray depositied $CoWO_4$ films for photovoltaic electrochemical studies", J. Mat. Sci. 42 (2007) 7927. https://doi.org/10.1007/s10853-007-1551-8
  7. S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud and D. Mangalaraj, "Hydrothermal synthesis and electronic properties $FeWO_4$ and $CoWO_4$ nanostructures", J. Alloys and Compounds 493 (2010) 340. https://doi.org/10.1016/j.jallcom.2009.12.099
  8. S.J. Naik and A.V. Salker, "Solis state studies on cobalt and cupper tungstates nano materials", Solid State Sci. in press (2010).
  9. X.G. Huang and Y. Zhu, "Synthesis and photocataytic performance of $ZnWO_4$ catalyst", Mat. Sci. Eng. B 139 (2007) 201. https://doi.org/10.1016/j.mseb.2007.02.009
  10. Z. Song, J. Ma, H. Sun, Y. Sun, J. fang, Z. Liu, C. Gao, Y. Liu and J. Zhao, "Low-tempaerature molten salt synthesis and characterization of $CoWO_4$ nano-particles", Mat. Sci. Eng. B 163 (2009) 62. https://doi.org/10.1016/j.mseb.2009.05.002
  11. T. Dong, Z. Li, Z. Ding, L. Wu, X. Wang and X. Fu, "Characterization and properties of $Eu^{3+}$ -doped $ZnWO_4$ prepared via a facile self-propagating combustion method", Mat. Res. Bull. 43 (2008) 1694. https://doi.org/10.1016/j.materresbull.2007.07.020
  12. A. Dodd, A. Mckinley, T. Tsuzuki and M. Saunders, "Mechanochemical synthesis of nanoparticulate $ZnO-ZnWO_4$ powders and their photocatalytic activity", J. Euro. Cer. Soc. 29 (2009) 139. https://doi.org/10.1016/j.jeurceramsoc.2008.05.027
  13. X. Zhao, W. Yao, Y. Wu, S. Zhang. H. Yang and Y. Zhu, "Fabrication and photo-electrochemical properties of porous $ZnWO_4$ film", J. Sol. Stat. Che. 179 (2006) 2562. https://doi.org/10.1016/j.jssc.2006.05.004
  14. F.-S. Wen, X. Zhao, H. Huo, J.-S. Chen, E. Shu-Lin and J.-H. Zhang, "Hydrothermal synthesis and photoluminescent properties of $ZnWO_4$ and $Eu^{3+}$ -doped $ZnWO_4$", Mat. Lett. 55 (2002) 152. https://doi.org/10.1016/S0167-577X(01)00638-3
  15. C. Zhang and Y. Zhu, "$ZnWO_4$ photocatalyst with high activity for degradation of organic contaminants", Alloys and Compounds 432 (2007) 269. https://doi.org/10.1016/j.jallcom.2006.05.109
  16. L. Zhen, W.S. Wang, C.Y. Xu, W.Z. Shao and L.C. Qin, "A Facile hydrothermal route to large-scale synthesis of $CoWO_4$ nanorods", Mat. Lett. 62 (2008) 1740. https://doi.org/10.1016/j.matlet.2007.09.076
  17. A. Sen and P. Pramanik, "A chemical synthesis route for the preparation of fine-grained metal tungstate poeders (M=Ca, Co, Ni, Cu, Zn)", Euro. Cer. Soc. 21 (2001) 745. https://doi.org/10.1016/S0955-2219(00)00265-X
  18. J. Bi, L. Wu, Z. Li, Z. Li, Z. Ding, X. Wang and X. Fu, "A facile microwave solvothermal process to synthesize $ZnWO_4$ nanoparticles", J. Alloys and Compounds 480 (2009) 684. https://doi.org/10.1016/j.jallcom.2009.02.029
  19. P. Parhi, T.N. Karthik and V. Manivannan, "Synthesis and characterization of metal tungstates by novel solidstate metathetic approach", J. Alloys and Compounds. 465 (2008) 380. https://doi.org/10.1016/j.jallcom.2007.10.089
  20. P. Parhi and V. Manivannan, "Microwave metathetic approach for the synthesis and characterization of $ZnCr_2O_4$", J. Euro. Cer. Soc. 28 (2008) 1665. https://doi.org/10.1016/j.jeurceramsoc.2007.11.005
  21. P. Parhi and V. Manivannan, "Novel microwave initiative synthesis of $Zn_2SiO_4$ and $MCrO_4$ (M=Ca, Sr, Ba, Pb)", J. Alloys and Compounds 469 (2009) 558. https://doi.org/10.1016/j.jallcom.2008.02.010