DOI QR코드

DOI QR Code

Biochemical Characterization of Cysteine(-) Mutant Alanine Racemase from Bacillus pseudomycoides

Bacillus pseudomycoides로 부터 분리된 alanine racemase 유전자의 cysteine 치환 및 생화학적 특성

  • Kang, Han-Chul (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Sang-Hong (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Chang-Muk (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration) ;
  • Koo, Bon-Sung (Department of Functional Bio-material, National Academy of Agricultural Science, Rural Development Administration)
  • 강한철 (농촌진흥청 국립농업과학원 기능성물질개발과) ;
  • 윤상홍 (농촌진흥청 국립농업과학원 기능성물질개발과) ;
  • 이창묵 (농촌진흥청 국립농업과학원 기능성물질개발과) ;
  • 구본성 (농촌진흥청 국립농업과학원 기능성물질개발과)
  • Received : 2010.09.14
  • Accepted : 2010.11.03
  • Published : 2010.12.31

Abstract

A gene encoding an alanine racemase in B. pseudomycoides was cloned and one (Cys316) or both of two cysteines (Cys316 and Cys365) was (were) substituted with alanine. The cysteine (-) alanine racemases were expressed in E. coli BL21 (DE3) using a pET-21 vector. The expressed enzymes were purified through affinity chromatography using 6xHis ligand. The purified enzymes all showed major one bands by SDS-PAGE analysis, corresponding to 46 kDa. The cysteine (-) alanine racemases as well as the wild type enzyme showed alanine racemase activities, indicating that the enzyme is an alanine racemase and the cysteines in the enzyme may not be involved in the catalysis and/or substrate binding. Thermal stabilities of Cys (-) alanine racemases decreased considerably and half-lives were 26 (wild type), 21 (C316A) and 18 min (C316-365A), respectively at $60^{\circ}C$ pH 8.0, suggesting that cysteine is considerably contributive to the thermal stability of the alanine racemase.

B. pseudomycoides로 부터 alanine racemase 유전자를 분리한 다음 이 효소에 존재하는 두개의 cysteine을 하나(C316A) 또는 두개 모두(C316-365A) alanine으로 치환시켰다. 치환된 alanine racemamase는 pET-21 운반체에 삽입한 다음 숙주세포로서 E. coli BL21 (DE3)를 이용하여 발현시켰다. 발현된 단백질은 6XHis이 결합된 affinity chromatography를 이용하여 분리하였으며 SDS-PAGE 분석에서 모두 약 46 kDa의 주요 단일밴드를 나타내었다. Cysteine(-) 변이체의 alanine racemase가 모두 활성도를 보여 cysteine이 catalytic 또는 binding sit에 관여하지 않는 것으로 추정되었다. 변이체 효소들은 wild type에 비하여 열 안정성이 모두 떨어져 $60^{\circ}C$ pH 8.0에서의 활성도 반감시간이 각각 26(wild type), 21(C316A) 18분(C316-365A)-을 나타내었다. 이러한 결과는 cysteine이 열안정화에 상당히 기여함을 알 수 있었다. 그러나 pH 변화에 대한 안정성은 큰 차이가 없었다.

Keywords

References

  1. Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Bonaccorsi DP, Carri MT, Gabbianellim R, Volpem C, Giartosiomm A, Rotilio G, Battistoni A (2000) A free cysteine residue at the dimer interface decreases conformational stability of Xenopus laevis copper, zinc superoxide dismutase. Arch Biochem Biophys 377, 284-289. https://doi.org/10.1006/abbi.2000.1786
  3. Burova TV, Choiset Y, Tran V and Haertle T (1998) Role of free Cys121 in stabilization of bovine betalactoglobulin B. Protein eng 11, 1065-1073. https://doi.org/10.1093/protein/11.11.1065
  4. Fremaux I, Mazeres S, Brisson-Lougarre A, Arnaud M, Ladurantie C, Fournier D (2002) Improvement of Drosophila acetylcholinesterase stability by elimination of a free cysteine. BMC Biochem 3, 21-27. https://doi.org/10.1186/1471-2091-3-21
  5. Gloss LM, Planas A, and Kirsch JF (1992) Contribution to catalysis and stability of the five cysteines in Escherichia coli aspartate aminotransferase: preparation and properties of a cysteine-free enzyme. Biochemistry 31, 32-39. https://doi.org/10.1021/bi00116a007
  6. Hamza MA and Engel PC (2007) Enhancing long-term thermal stability in mesophilic glutamate dehydrogenase Clostridium symbiosum by eliminating cysteine residues. Enzyme Microb Tech 41, 706-710. https://doi.org/10.1016/j.enzmictec.2007.06.008
  7. Hiraga K, and Yutani K (1996) Study of cysteine residues in the alpha subunit of Escherichia coli tryptophan synthase I. Role in conformational stability. Protein Eng 9, 425-431. https://doi.org/10.1093/protein/9.5.425
  8. Hoffmann K, Schneider E, Klein H and Zocher R (1994) Purification and characterization of eukaryotic alanine racemase acting as key enzyme in cyclosporine biosynthesis. J Biol Chem 269, 12710-12714.
  9. Holden MJ, Mayhew MP, Gallagher DT, Vilker VL (2002) Chorismate lyase: kinetics and engineering for stability. Biochim Biophys Acta 1594, 160-167. https://doi.org/10.1016/S0167-4838(01)00302-8
  10. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem., Int. ed. 42, 4742-4758. https://doi.org/10.1002/anie.200300573
  11. Johnston M and Diven WF (1969) Studies on amino acid racemases. J Biol Chem 244, 5414-5420.
  12. Ju J, Yokoigawa K, Misono H, and Ohnishi K (2005) Cloning of alanine racemase genes from Pseudomonas fluorescens strains and oligomerization states of gene products expressed in Escherichia coli. J Biosci Bioeng 100, 409-417. https://doi.org/10.1263/jbb.100.409
  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  14. McRee DE, Redford SM, Getzoff ED, Lepock JR, Hallewell RA and Tainer JA (1990) Changes in crystallographic structure and thermostability of a Cu, Zn superoxide dismutase mutant resulting from the removal of a buried cysteine. J Biol Chem 265, 14234-14241.
  15. Militello V, Vetri V, Leone M (2003) Conformational changes involved in thermal aggregation processes of bovine serum albumin. Biophys Chem 105, 133-141. https://doi.org/10.1016/S0301-4622(03)00153-4
  16. Nagano N, Ota M, Nishikawa K (1999) Strong hydrophobic nature of cysteine residues in proteins. FEBS Lett 458, 69-71. https://doi.org/10.1016/S0014-5793(99)01122-9
  17. Netto LES, Oliveira MA, Monteiro G, Demasi APD, Cussiol JRR, Discola KF, Demasi M, Silva GM, Alves SV, Faria VG, Horta BB (2007) Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol C 146, 180-193. https://doi.org/10.1016/j.cbpa.2006.10.013
  18. Niroshini MG, Gregory IG, Claus J (2003) Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commum 300, 1-4. https://doi.org/10.1016/S0006-291X(02)02770-5
  19. Patti MC, Carri MT, Gabbianelli R, Gai R, Volpe C, Giartosio A, Rotilio G, and Battistoni A (2000) A free residual cysteine residue at the dimer interface decreases conformational stability of Xenopus laevis copper, zinc superoxide dismutase. Arc Biochem Biophys 377, 284-289. https://doi.org/10.1006/abbi.2000.1786
  20. Saito M, Nishimura K, Hasegawa Y, Shinohara T, Wakabayashi S, Kurihara T, Ishizuka M, and Nagata Y (2007) Alanine racemase from Helicobacter pylori NCTC11637. Life Sci 80, 788-794. https://doi.org/10.1016/j.lfs.2006.11.005
  21. Smyth DG, Nagamatsu A, and Fruton JS (1960) Some reactions of N-ethylmaleimide. J Am Chem Soc 82, 4600-4604. https://doi.org/10.1021/ja01502a039
  22. Smyth DG, Blumenfeld OO, and Konigsberg W (1964) Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J 91, 589-564. https://doi.org/10.1042/bj0910589
  23. Takara Y, Yoshida T and Ichishima E (2005) A single free cysteine residue and disulfide bond contribute to the thermostability of Aspergillus saitoi 1,2-$\alpha$-mannosidase. Biosci Biotechnol Biochem 69, 2101-2108. https://doi.org/10.1271/bbb.69.2101
  24. You C, Huang Q, Xue H, Lu H (2010) Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. Biotechnol Bioeng 1, 861-870.
  25. Visschers RW, Jongh H (2005) Disulphide bond formation in food protein aggregation and gelatin. Biotechnol Adv 23, 75-80. https://doi.org/10.1016/j.biotechadv.2004.09.005
  26. Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 289, 1-30. https://doi.org/10.1016/j.ijpharm.2004.11.014
  27. Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300, 650-653. https://doi.org/10.1126/science.1080405
  28. Zhang X, Jantama K, Moore JC, Shanmugam KT, and Ingram LO (2007) Production of L-alanine by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77, 355-366. https://doi.org/10.1007/s00253-007-1170-y