Evaluation of Acute Toxicity about Leakage Waters of Antifouling Paints on Sebastes shlegeli and Artemia

방오도료 용출수의 조피볼락과 알테미아에 대한 급성독성 평가

  • Kim, Pil-Geun (Mining Business Team, DSME E&R) ;
  • Park, Maeng-Eon (Department of Earth Environmental Sciences, Pukyong National University) ;
  • Lee, In-Won (Advanced Ship Engineering Research Center (ASERC), Pusan National University) ;
  • Chun, Ho-Hwan (Advanced Ship Engineering Research Center (ASERC), Pusan National University) ;
  • Park, Hyun (Advanced Ship Engineering Research Center (ASERC), Pusan National University)
  • 김필근 (대우조선해양E&R 광물사업팀) ;
  • 박맹언 (부경대학교 지구환경과학과) ;
  • 이인원 (부산대학교 첨단조선공학연구센터) ;
  • 전호환 (부산대학교 첨단조선공학연구센터) ;
  • 박현 (부산대학교 첨단조선공학연구센터)
  • Received : 2010.10.13
  • Accepted : 2010.12.23
  • Published : 2010.12.31

Abstract

The use of antifouling(AF) paints is the effective method for the protection of underwater structures from the development of marine fouling organisms. The ban on harmful substances in antifouling paints requires the development of new antifouling strategies although Tributyitin (TBT) compound had been used extensively as an active ingredient Alternatives should be as effective as conventional paints but have lower toxicity. In the present study, a TBT-free self-polishing (Cu SPC) AF paint containing $Cu_2O$, a Cu free SPC AF paint, and a Foul-release silicone AF paint, which were commercially available, were examined to investigate environmental erects of leakage waters employing Sebastes shlegeli and Artemia. Survival rates were inversely proportional to the concentration of leakage waters from AF paints and the acute toxicity of SPC AF paints was relatively higher than that of foul release AF paints.

해양구조물 수중부의 해양생물 부착을 방지하는 효과적인 방법으로 방오도료를 사용하고 있다. 트리부틸틴(Tributyltin, TBT) 화합물은 우수한 방오성능을 가져 지금까지 광범위하게 사용해 되어 왔으나, 유해물질 사용금지에 따라 새로운 기술을 적용한 방오도료 개발이 진행되고 있다. 신규 방오도료는 낮은 독성을 가지면서도 우수한 방오성능을 가져야 한다. 본 논문에서는 상용 TBT-free 방오도료 3종(아산화동 함유 자기마모형 도료(Cu SPC AF), 아산화동을 함유하지 않는 자기마모형 도료(Cu-Free SPC AF), Foul-release 실리콘 도료(Foul release AF)의 용출수가 가지는 환경영향성을 조피볼락과 알테미아를 사용하여 평가하였다. 용출수에 대한 급성독성을 조사한 결과 방오도료 용출수의 농도와 생물종의 생존율은 반비례하는 경향을 나타내었으며, 자가마모형 도료가 Foul-release 실리콘 도료보다 상대적으로 높은 급성독성을 가지는 것을 확인할 수 있었다.

Keywords

References

  1. 박건호, 이규태, 이정석, 한경남(2000), 방오도료(TBT, Sea-nine, Cu-pyrithione and Zn-pyrithione)의 조피볼락 Sebastes schlegeli과 단각류 Monocorophium acherusicum에 대한 급성독성 비교. 한국해양환경공학회지, 제9권, 제1호. pp. 21-28.
  2. 이혁인(2008), 국제해사기구(IMO) 제57차 해양환경보호위원회(MEPC) 회의결과, 대한조선학회지, 제45권, 제2호, pp.3-9.
  3. Abel, P. D. and J. F. Skidmore(1974), Toxic effects of an anionic detergent on the gills of rainbow trout, Water Research, Vol. 9, pp. 759-765.
  4. Alzieu, C.(1996), Biological effects of tributyltin on marine organism. In : de Mara, S.J., (Ed.), Tributyltin : Case Study of an Environmental Contaminant, Cambridge University Press, Cambridge, pp. 167-211.
  5. Bently, M. G. and A. S. Clare(2001), Marine invertebrate chemical signals, Biological Sciences Reviews, Vol. 13, pp. 7-9.
  6. Dahl, B. and H. Blanck(1996), Toxic effects of the anti-fouling agent irgarol 1051 on periphyton communities in coastal water microcosms, Marine Pollution Bulletin, Vol. 32, pp. 342-350. https://doi.org/10.1016/0025-326X(96)84828-4
  7. Evans, S. M., A. C. Birchenough and M. S. Branco (2000), The TBT ban: out of the flying pan into the fire?, Marine Pollution Bulletin, Vol. 3, pp. 204-211.
  8. Gibbs, P. E., G. W. Bryan, P. L. Pascoe and G. R. Burt(1987), The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. Journal of the Marine Biological Association of the United Kingdom, Vol. 67, pp. 507-523. https://doi.org/10.1017/S0025315400027260
  9. Karlsson, J. and B. Eklund(2004), New biocide-free anti-fouling paints are toxic, Marine Pollution Bulletin, Vol. 49, pp. 456-464. https://doi.org/10.1016/j.marpolbul.2004.02.034
  10. Lewis, M. A.(1991), Chronic and sublethal toxicities of surfactants to aquatic animals: A review and risk assessment, Water Research, Vol. 25, pp. 101-113. https://doi.org/10.1016/0043-1354(91)90105-Y
  11. Ohji, M., I. Takeuchi, S. Takahashi, S. Tanave and N. Miyazaki (2002), Differences in the acute toxicities of tributyltin between the Caprellidea and the Gammaridea (Crustacea: Amphipoda), Marine Pollution Bulletin Vol. 44, pp. 16-24. https://doi.org/10.1016/S0025-326X(01)00146-1
  12. Omae, I.(2003), Organotin antifouling paints and their alternatives, Applied Organometallic Chemistry, Vol. 17, No.2, pp. 81-105. https://doi.org/10.1002/aoc.396
  13. Spooner, N., P. E. Gibbs, G. W. Bryan and L. J. Goad(1991), The effect of tributyltin upon steroid titres in the female dogwheIk, Nucella lapillus, and the development of imposex. Marine Environmental Research, Vol. 32, pp. 37-49. https://doi.org/10.1016/0141-1136(91)90032-4
  14. Stupak, M. E., M. T. Garcia and M. C. Perez(2003), Non-toxic alternative compounds for marine antifouling paints. International Biodeterioration & Biodegradation, Vol. 52, pp. 49-52. https://doi.org/10.1016/S0964-8305(03)00035-0
  15. Vanhaecke, P., G. Persoone, C. Claus and P. Sorgeloos (1981), Proposal for a short-term toxicity test with Artemia nauplii, Ecotoxicology and Envrronrnental Safety, Vol. 5, No.3, pp. 382-387. https://doi.org/10.1016/0147-6513(81)90012-9
  16. Waal, M.(1989), Marine epibiosis I, Fouling and antifouling: some basis aspects, Marine Ecology Progress Series, Vol. 58, pp. 175-189. https://doi.org/10.3354/meps058175
  17. Wezel, A. P. and P. Vlaardingen(2004), Envrronmental risk limits for antifouling substances, Aquatic Toxicology, Vol. 66, pp. 427-444. https://doi.org/10.1016/j.aquatox.2003.11.003