DOI QR코드

DOI QR Code

Synthesis and Characterization of Bisnitrofurazanofuroxan

  • Lim, Choong-Hwan (High Energy Material Research Center, Department of Chemistry, Inha University) ;
  • Kim, Tae-Keun (High Energy Material Research Center, Department of Chemistry, Inha University) ;
  • Kim, Kyung-Ho (High Energy Material Research Center, Department of Chemistry, Inha University) ;
  • Chung, Kyoo-Hyun (High Energy Material Research Center, Department of Chemistry, Inha University) ;
  • Kim, Jin-Seuk (Agency for Defense Development)
  • Received : 2009.12.29
  • Accepted : 2010.03.13
  • Published : 2010.05.20

Abstract

Keywords

References

  1. Lim, C. H.; Hong, S.; Chung, K.-H.; Kim, J. S.; Cho, J. R. Bull. Korean Chem. Soc. 2008, 29, 1415. https://doi.org/10.5012/bkcs.2008.29.7.1415
  2. Katrizky, A. R.; Sommen, G. L.; Gromova, A. V.; Witek, R. M.; Steel, P. J.; Damavarapu, R. Chem. Heterocycl. Comp. 2005, 41, 111. https://doi.org/10.1007/s10593-005-0116-5
  3. Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525. https://doi.org/10.1016/S0040-4020(98)00673-5
  4. Coburn, M. D. J. Heterocycl. Chem. 1968, 5, 83. https://doi.org/10.1002/jhet.5570050114
  5. Aleksandrova, N. S.; Kharitonova, O. V.; Khmelnitskii, L. I.; Kulagina, V. O.; Melnikova, T. M.; Novikov, S. S.; Novikova, T. S.; Pivina, T. S.; Sheremetev, A. B. Mendeleev Commun. 1994, 230.
  6. Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: West Sussex, England, 2007; p 302.
  7. Bohn, H.; Brendel, J.; Martorana, P. A.; Schonafinger, K. Brit. J. Pharm. 1995, 114, 1605. https://doi.org/10.1111/j.1476-5381.1995.tb14946.x
  8. Gasco, A.; Fruttero, R.; Sorba, G. IL Pharmaco 1996, 51, 617.
  9. Cerecetto, H.; Di Maio, R.; Gonzalez, M.; Risso, M.; Saenz, P.; Seoane, G.; Denicola, A.; Peluffo, G.; Quijano, C.; OleaAzar, C. J. Med. Chem. 1999, 42, 1941. https://doi.org/10.1021/jm9805790
  10. Boschi, D.; Cena, C.; Di Stilo, A.; Fruttero, R.; Gasco, A. Bioorg. Med. Chem. 2000, 8, 1727. https://doi.org/10.1016/S0968-0896(00)00098-5
  11. Li, M.; Sishen, F.; Mei, L. G. Chem. Pharm. Bull. 2000, 48, 808. https://doi.org/10.1248/cpb.48.808
  12. Norris, W. P.; Spear, R. J. Propell. Explos. Pyrotech. 1983, 8, 85. https://doi.org/10.1002/prep.830080308
  13. Agrawal, J. P.; Mehilal, R. B. S.; Shinde, P. D. Propell. Explos. Pyrotech. 2003, 28, 77. https://doi.org/10.1002/prep.200390012
  14. Sheremetev, A. B.; Ivanova, E. A.; Spiridonova, N. P.; Tselinsky, I. V.; Suponitsky, K. Y.; Antipin, M. J. Heterocycl. Chem. 2005, 42, 1237. https://doi.org/10.1002/jhet.5570420634
  15. Zhao, F.-Q.; Chen, P.; Hu, R.-Z.; Luo, Y.; Zhang, Z.-Z.; Zhou, Y.-S.; Yang, X.-W.; Gao, Y.; Gao, S.-L.; Shi, Q.-Z. J. Hazardous Materials A 2004, 113, 67. https://doi.org/10.1016/j.jhazmat.2004.07.009
  16. Ichikawa, T.; Kato, T.; Takenishi, T. J. Heterocycl. Chem. 1965, 2, 253. https://doi.org/10.1002/jhet.5570020307
  17. Beaudegnies, R.; Wendeborn, S. Heterocycles 2003, 60, 2417. https://doi.org/10.3987/COM-03-9833
  18. Andranov, V.; Eremeev, A. Khimiya Geterotsiklicheskikh Soedinenii 1994, 3, 420. CAN 123:198702.
  19. Tselinskii, I. V.; Mel’nikova, S. F.; Romanova, T. V.; Spiridonova, N. P.; Dundukova, E. A. Russ. J. Org. Chem. 2001, 37, 1355. https://doi.org/10.1023/A:1013168629562
  20. Wang, J.; Li, J.; Liang, Q.; Huang, Y.; Dong, H. Propel. Explos. Pyrotech. 2008, 33, 347. https://doi.org/10.1002/prep.200800225
  21. Wang, J.; Dong, H.-S.; Huang, Y.-G.; Zhou, X.-Q.; Li, J.-S. Chin. J. Synth. Chem. 2006, 14, 131. CAN 145; 251737.
  22. Lee, S. H.; Jo, I.; Lee, J. H.; Hwang, K.-J. Bull. Korean Chem. Soc. 1997, 18, 1115.
  23. Yu, Z.-X.; Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 15240.
  24. Matt, C.; Gissot, A.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 1191. https://doi.org/10.1016/S0040-4039(99)02278-9
  25. Kim, G. Y.; Kim, J.; Lee, J. H.; Kim, H. J.; Hwang, K-J. Bull. Korean Chem. Soc. 2009, 30, 459. https://doi.org/10.5012/bkcs.2009.30.2.459
  26. Boldyrev, M. D.; Gidaspov, B. V.; Nikolaev, V. D.; Soludyuk, G. D. J. Org. Chem. (USSR) 1981, 17, 756.
  27. Lee, G. S.; Mitchell, A. R.; Pagoria, P. F.; Schmidt, R. D. J. Heterocycl. Chem. 2001, 38, 1227. https://doi.org/10.1002/jhet.5570380533
  28. Zhao, F.-Q.; Guo, P.-J.; Hu, R.-Z.; Zhang, H.; Xia, Z.-M.; Gao, H.-X.; Chen, P.; Luo, Y.; Zhang, Z. Z.; Zhuo, Y.-S.; Zhau, H.-A.; Gao, S.-L.; Shi, Q.-Z.; Lu, G.-E.; Jiang, J.-Y. Chin. J. Chem. 2006, 24, 631. https://doi.org/10.1002/cjoc.200690121

Cited by

  1. Trinitromethyl-Substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties vol.133, pp.16, 2011, https://doi.org/10.1021/ja2013455
  2. -1,2,4-triazole vol.133, pp.49, 2011, https://doi.org/10.1021/ja208990z
  3. Synthesis and Characterization of Bisnitrofurazanodioxadiazine (BNFOZ) vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3802
  4. Synthesis of linear and cyclic compounds containing the 3,4-bis(furazan-3-yl)furoxan fragment vol.61, pp.5, 2012, https://doi.org/10.1007/s11172-012-0132-4
  5. Synthesis and Characterization of Bisimidazolylfuroxan Derivatives vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1864
  6. Crystal structure of 4,4″-dinitro-[3,3′,4′,3″]-tris-[1,2,5]-oxadiazole vol.54, pp.2, 2013, https://doi.org/10.1134/S0022476613020285
  7. NMR spectroscopic study of 3-nitrofurazans vol.62, pp.2, 2013, https://doi.org/10.1007/s11172-013-0070-9
  8. Cascade nitrosation and addition–elimination of nitroacetanilides for the highly efficient synthesis of 1,4,2,5-dioxadiazine derivatives vol.12, pp.24, 2014, https://doi.org/10.1039/C3OB42487A
  9. Dual Effects of Indoleamine 2,3-Dioxygenase Inhibitors on the Therapeutic Effects of Cyclophosphamide and Cycloplatam on Ehrlich Ascites Tumor in Mice vol.157, pp.4, 2014, https://doi.org/10.1007/s10517-014-2602-1
  10. Searching for Low-Sensitivity Cast-Melt High-Energy-Density Materials: Synthesis, Characterization, and Decomposition Kinetics of 3,4-Bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-2-oxide vol.119, pp.7, 2015, https://doi.org/10.1021/jp5118008
  11. A study of N-trinitroethyl-substituted aminofurazans: high detonation performance energetic compounds with good oxygen balance vol.3, pp.15, 2015, https://doi.org/10.1039/C4TA06974A
  12. In situ synthesized 3D heterometallic metal–organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity vol.44, pp.5, 2015, https://doi.org/10.1039/C4DT03131H
  13. vol.120, pp.4, 2016, https://doi.org/10.1111/jam.13063
  14. Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG vol.126, pp.3, 2016, https://doi.org/10.1007/s10973-016-5712-3
  15. furazan energetic salts vol.45, pp.39, 2016, https://doi.org/10.1039/C6DT02993K
  16. Synthesis and some chemical characteristics of 4″-nitro-3,3′:4′,3″-ter-1,2,5-oxadiazol-4-amine vol.52, pp.8, 2016, https://doi.org/10.1134/S1070428016080170
  17. Comprehensive End-to-End Design of Novel High Energy Density Materials: I. Synthesis and Characterization of Oxadiazole Based Heterocycles vol.121, pp.43, 2017, https://doi.org/10.1021/acs.jpcc.7b07584
  18. Potassium Nitraminofurazan Derivatives: Potential Green Primary Explosives with High Energy and Comparable Low Friction Sensitivities vol.23, pp.30, 2017, https://doi.org/10.1002/chem.201700739
  19. An interesting 1,4,2,5-dioxadiazine-furazan system: structural modification by incorporating versatile functionalities vol.46, pp.41, 2017, https://doi.org/10.1039/C7DT02098H
  20. A rational method of synthesis and chemical properties of 5-(4-aminofurazan-3-yl)-1-hydroxytetrazole vol.53, pp.6-7, 2017, https://doi.org/10.1007/s10593-017-2121-x
  21. Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials vol.53, pp.6-7, 2017, https://doi.org/10.1007/s10593-017-2122-9
  22. Synthesis of Nitro, Dinitro, and Polynitroalkylamino Derivatives of Trifurazanoxide pp.0022152X, 2017, https://doi.org/10.1002/jhet.2920
  23. Theoretical Chemical Investigation and Detonation Characterization of AAOF and ACOF vol.997, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.997.85
  24. Comparative Study of Stability and Detonation Characterization of AMF and ACF vol.997, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.997.97
  25. Incorporating Energetic Moieties into Four Oxadiazole Ring Systems for the Generation of High-Performance Energetic Materials vol.83, pp.5, 2018, https://doi.org/10.1002/cplu.201800107
  26. Boosting energetic performance by trimerizing furoxan vol.6, pp.20, 2018, https://doi.org/10.1039/C8TA02274G
  27. ChemInform Abstract: Synthesis and Characterization of Bisnitrofurazanofuroxan. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040134
  28. The first synthesis of 3-nitro-4-[(s-tetrazin-3-yl)amino]furazans vol.20, pp.6, 2010, https://doi.org/10.1016/j.mencom.2010.11.017
  29. Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.124, pp.39, 2012, https://doi.org/10.1002/ange.201205134
  30. Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.51, pp.39, 2010, https://doi.org/10.1002/anie.201205134
  31. Synthesis and Characterization of BNFF Analogues vol.33, pp.8, 2010, https://doi.org/10.5012/bkcs.2012.33.8.2765
  32. Energetic materials containing fluorine. Design, synthesis and testing of furazan-containing energetic materials bearing a pentafluorosulfanyl group vol.143, pp.None, 2010, https://doi.org/10.1016/j.jfluchem.2012.03.010
  33. Comparative DFT-D studies on structural and absorption properties of crystalline 3,3′-dinitroamino-4,4′-azoxyfurazan, 3,3′-dinitro-4,4′-azoxyfurazan, and 3,4-bis(3-nitrofurazan vol.93, pp.11, 2010, https://doi.org/10.1139/cjc-2015-0187
  34. Synthesis, characterization, and antitumor evaluation of 4-aminoximidofurazan derivatives vol.191, pp.7, 2010, https://doi.org/10.1080/10426507.2015.1119828
  35. 1,2,5‐Oxadiazole‐Based High‐Energy‐Density Materials: Synthesis and Performance vol.85, pp.1, 2020, https://doi.org/10.1002/cplu.201900542
  36. Finding furoxan rings vol.8, pp.12, 2010, https://doi.org/10.1039/d0ta01538e
  37. Ring Distortion Diversity‐Oriented Approach to Fully Substituted Furoxans and Isoxazoles vol.10, pp.10, 2010, https://doi.org/10.1002/ajoc.202100475