References
- Lim, C. H.; Hong, S.; Chung, K.-H.; Kim, J. S.; Cho, J. R. Bull. Korean Chem. Soc. 2008, 29, 1415. https://doi.org/10.5012/bkcs.2008.29.7.1415
- Katrizky, A. R.; Sommen, G. L.; Gromova, A. V.; Witek, R. M.; Steel, P. J.; Damavarapu, R. Chem. Heterocycl. Comp. 2005, 41, 111. https://doi.org/10.1007/s10593-005-0116-5
- Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525. https://doi.org/10.1016/S0040-4020(98)00673-5
- Coburn, M. D. J. Heterocycl. Chem. 1968, 5, 83. https://doi.org/10.1002/jhet.5570050114
- Aleksandrova, N. S.; Kharitonova, O. V.; Khmelnitskii, L. I.; Kulagina, V. O.; Melnikova, T. M.; Novikov, S. S.; Novikova, T. S.; Pivina, T. S.; Sheremetev, A. B. Mendeleev Commun. 1994, 230.
- Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: West Sussex, England, 2007; p 302.
- Bohn, H.; Brendel, J.; Martorana, P. A.; Schonafinger, K. Brit. J. Pharm. 1995, 114, 1605. https://doi.org/10.1111/j.1476-5381.1995.tb14946.x
- Gasco, A.; Fruttero, R.; Sorba, G. IL Pharmaco 1996, 51, 617.
- Cerecetto, H.; Di Maio, R.; Gonzalez, M.; Risso, M.; Saenz, P.; Seoane, G.; Denicola, A.; Peluffo, G.; Quijano, C.; OleaAzar, C. J. Med. Chem. 1999, 42, 1941. https://doi.org/10.1021/jm9805790
- Boschi, D.; Cena, C.; Di Stilo, A.; Fruttero, R.; Gasco, A. Bioorg. Med. Chem. 2000, 8, 1727. https://doi.org/10.1016/S0968-0896(00)00098-5
- Li, M.; Sishen, F.; Mei, L. G. Chem. Pharm. Bull. 2000, 48, 808. https://doi.org/10.1248/cpb.48.808
- Norris, W. P.; Spear, R. J. Propell. Explos. Pyrotech. 1983, 8, 85. https://doi.org/10.1002/prep.830080308
- Agrawal, J. P.; Mehilal, R. B. S.; Shinde, P. D. Propell. Explos. Pyrotech. 2003, 28, 77. https://doi.org/10.1002/prep.200390012
- Sheremetev, A. B.; Ivanova, E. A.; Spiridonova, N. P.; Tselinsky, I. V.; Suponitsky, K. Y.; Antipin, M. J. Heterocycl. Chem. 2005, 42, 1237. https://doi.org/10.1002/jhet.5570420634
- Zhao, F.-Q.; Chen, P.; Hu, R.-Z.; Luo, Y.; Zhang, Z.-Z.; Zhou, Y.-S.; Yang, X.-W.; Gao, Y.; Gao, S.-L.; Shi, Q.-Z. J. Hazardous Materials A 2004, 113, 67. https://doi.org/10.1016/j.jhazmat.2004.07.009
- Ichikawa, T.; Kato, T.; Takenishi, T. J. Heterocycl. Chem. 1965, 2, 253. https://doi.org/10.1002/jhet.5570020307
- Beaudegnies, R.; Wendeborn, S. Heterocycles 2003, 60, 2417. https://doi.org/10.3987/COM-03-9833
- Andranov, V.; Eremeev, A. Khimiya Geterotsiklicheskikh Soedinenii 1994, 3, 420. CAN 123:198702.
- Tselinskii, I. V.; Mel’nikova, S. F.; Romanova, T. V.; Spiridonova, N. P.; Dundukova, E. A. Russ. J. Org. Chem. 2001, 37, 1355. https://doi.org/10.1023/A:1013168629562
- Wang, J.; Li, J.; Liang, Q.; Huang, Y.; Dong, H. Propel. Explos. Pyrotech. 2008, 33, 347. https://doi.org/10.1002/prep.200800225
- Wang, J.; Dong, H.-S.; Huang, Y.-G.; Zhou, X.-Q.; Li, J.-S. Chin. J. Synth. Chem. 2006, 14, 131. CAN 145; 251737.
- Lee, S. H.; Jo, I.; Lee, J. H.; Hwang, K.-J. Bull. Korean Chem. Soc. 1997, 18, 1115.
- Yu, Z.-X.; Caramella, P.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 15240.
- Matt, C.; Gissot, A.; Wagner, A.; Mioskowski, C. Tetrahedron Lett. 2000, 41, 1191. https://doi.org/10.1016/S0040-4039(99)02278-9
- Kim, G. Y.; Kim, J.; Lee, J. H.; Kim, H. J.; Hwang, K-J. Bull. Korean Chem. Soc. 2009, 30, 459. https://doi.org/10.5012/bkcs.2009.30.2.459
- Boldyrev, M. D.; Gidaspov, B. V.; Nikolaev, V. D.; Soludyuk, G. D. J. Org. Chem. (USSR) 1981, 17, 756.
- Lee, G. S.; Mitchell, A. R.; Pagoria, P. F.; Schmidt, R. D. J. Heterocycl. Chem. 2001, 38, 1227. https://doi.org/10.1002/jhet.5570380533
- Zhao, F.-Q.; Guo, P.-J.; Hu, R.-Z.; Zhang, H.; Xia, Z.-M.; Gao, H.-X.; Chen, P.; Luo, Y.; Zhang, Z. Z.; Zhuo, Y.-S.; Zhau, H.-A.; Gao, S.-L.; Shi, Q.-Z.; Lu, G.-E.; Jiang, J.-Y. Chin. J. Chem. 2006, 24, 631. https://doi.org/10.1002/cjoc.200690121
Cited by
- Trinitromethyl-Substituted 5-Nitro- or 3-Azo-1,2,4-triazoles: Synthesis, Characterization, and Energetic Properties vol.133, pp.16, 2011, https://doi.org/10.1021/ja2013455
- -1,2,4-triazole vol.133, pp.49, 2011, https://doi.org/10.1021/ja208990z
- Synthesis and Characterization of Bisnitrofurazanodioxadiazine (BNFOZ) vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3802
- Synthesis of linear and cyclic compounds containing the 3,4-bis(furazan-3-yl)furoxan fragment vol.61, pp.5, 2012, https://doi.org/10.1007/s11172-012-0132-4
- Synthesis and Characterization of Bisimidazolylfuroxan Derivatives vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1864
- Crystal structure of 4,4″-dinitro-[3,3′,4′,3″]-tris-[1,2,5]-oxadiazole vol.54, pp.2, 2013, https://doi.org/10.1134/S0022476613020285
- NMR spectroscopic study of 3-nitrofurazans vol.62, pp.2, 2013, https://doi.org/10.1007/s11172-013-0070-9
- Cascade nitrosation and addition–elimination of nitroacetanilides for the highly efficient synthesis of 1,4,2,5-dioxadiazine derivatives vol.12, pp.24, 2014, https://doi.org/10.1039/C3OB42487A
- Dual Effects of Indoleamine 2,3-Dioxygenase Inhibitors on the Therapeutic Effects of Cyclophosphamide and Cycloplatam on Ehrlich Ascites Tumor in Mice vol.157, pp.4, 2014, https://doi.org/10.1007/s10517-014-2602-1
- Searching for Low-Sensitivity Cast-Melt High-Energy-Density Materials: Synthesis, Characterization, and Decomposition Kinetics of 3,4-Bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-2-oxide vol.119, pp.7, 2015, https://doi.org/10.1021/jp5118008
- A study of N-trinitroethyl-substituted aminofurazans: high detonation performance energetic compounds with good oxygen balance vol.3, pp.15, 2015, https://doi.org/10.1039/C4TA06974A
- In situ synthesized 3D heterometallic metal–organic framework (MOF) as a high-energy-density material shows high heat of detonation, good thermostability and insensitivity vol.44, pp.5, 2015, https://doi.org/10.1039/C4DT03131H
- vol.120, pp.4, 2016, https://doi.org/10.1111/jam.13063
- Evaluation of thermal hazards and thermo-kinetic parameters of 3-amino-4-amidoximinofurazan by ARC and TG vol.126, pp.3, 2016, https://doi.org/10.1007/s10973-016-5712-3
- furazan energetic salts vol.45, pp.39, 2016, https://doi.org/10.1039/C6DT02993K
- Synthesis and some chemical characteristics of 4″-nitro-3,3′:4′,3″-ter-1,2,5-oxadiazol-4-amine vol.52, pp.8, 2016, https://doi.org/10.1134/S1070428016080170
- Comprehensive End-to-End Design of Novel High Energy Density Materials: I. Synthesis and Characterization of Oxadiazole Based Heterocycles vol.121, pp.43, 2017, https://doi.org/10.1021/acs.jpcc.7b07584
- Potassium Nitraminofurazan Derivatives: Potential Green Primary Explosives with High Energy and Comparable Low Friction Sensitivities vol.23, pp.30, 2017, https://doi.org/10.1002/chem.201700739
- An interesting 1,4,2,5-dioxadiazine-furazan system: structural modification by incorporating versatile functionalities vol.46, pp.41, 2017, https://doi.org/10.1039/C7DT02098H
- A rational method of synthesis and chemical properties of 5-(4-aminofurazan-3-yl)-1-hydroxytetrazole vol.53, pp.6-7, 2017, https://doi.org/10.1007/s10593-017-2121-x
- Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials vol.53, pp.6-7, 2017, https://doi.org/10.1007/s10593-017-2122-9
- Synthesis of Nitro, Dinitro, and Polynitroalkylamino Derivatives of Trifurazanoxide pp.0022152X, 2017, https://doi.org/10.1002/jhet.2920
- Theoretical Chemical Investigation and Detonation Characterization of AAOF and ACOF vol.997, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.997.85
- Comparative Study of Stability and Detonation Characterization of AMF and ACF vol.997, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.997.97
- Incorporating Energetic Moieties into Four Oxadiazole Ring Systems for the Generation of High-Performance Energetic Materials vol.83, pp.5, 2018, https://doi.org/10.1002/cplu.201800107
- Boosting energetic performance by trimerizing furoxan vol.6, pp.20, 2018, https://doi.org/10.1039/C8TA02274G
- ChemInform Abstract: Synthesis and Characterization of Bisnitrofurazanofuroxan. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040134
- The first synthesis of 3-nitro-4-[(s-tetrazin-3-yl)amino]furazans vol.20, pp.6, 2010, https://doi.org/10.1016/j.mencom.2010.11.017
- Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.124, pp.39, 2012, https://doi.org/10.1002/ange.201205134
- Tris(triazolo)benzene and Its Derivatives: High‐Density Energetic Materials vol.51, pp.39, 2010, https://doi.org/10.1002/anie.201205134
- Synthesis and Characterization of BNFF Analogues vol.33, pp.8, 2010, https://doi.org/10.5012/bkcs.2012.33.8.2765
- Energetic materials containing fluorine. Design, synthesis and testing of furazan-containing energetic materials bearing a pentafluorosulfanyl group vol.143, pp.None, 2010, https://doi.org/10.1016/j.jfluchem.2012.03.010
- Comparative DFT-D studies on structural and absorption properties of crystalline 3,3′-dinitroamino-4,4′-azoxyfurazan, 3,3′-dinitro-4,4′-azoxyfurazan, and 3,4-bis(3-nitrofurazan vol.93, pp.11, 2010, https://doi.org/10.1139/cjc-2015-0187
- Synthesis, characterization, and antitumor evaluation of 4-aminoximidofurazan derivatives vol.191, pp.7, 2010, https://doi.org/10.1080/10426507.2015.1119828
- 1,2,5‐Oxadiazole‐Based High‐Energy‐Density Materials: Synthesis and Performance vol.85, pp.1, 2020, https://doi.org/10.1002/cplu.201900542
- Finding furoxan rings vol.8, pp.12, 2010, https://doi.org/10.1039/d0ta01538e
- Ring Distortion Diversity‐Oriented Approach to Fully Substituted Furoxans and Isoxazoles vol.10, pp.10, 2010, https://doi.org/10.1002/ajoc.202100475