DOI QR코드

DOI QR Code

Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency

외부 가진 가변 주파수를 고려한 압전 진동 에너지 수확 모듈의 설계

  • Kim, Jae-Eun (Institute of Advanced Machinery and Design, Seoul Nat'l Univ.)
  • 김재은 (서울대학교 정밀기계설계 공동연구소)
  • Received : 2010.04.02
  • Accepted : 2010.04.09
  • Published : 2010.05.01

Abstract

A vibration-powered piezoelectric energy harvester yields the maximum power output when its resonant frequency is made equal to the excitation frequency; however, the power output is dramatically decreased when the energy harvester is operated at off-resonance frequency. It has been observed that the resonant frequency of a piezoelectric energy harvester may change with time and that the excitation frequency often varies when the energy harvester is used in real applications. Hence, in this study, we propose a piezoelectric energy-harvesting module that is suitable for excitations in a certain frequency range. The frequency characteristics of the electrical output of the module are studied through analysis and experiment. A simple frequency tuning method is also suggested for the proposed energy-harvesting module; in this method, frequency tuning is achieved by changing the electrical connections between the constituent energy-harvesting units of the module.

진동 에너지 기반의 압전 에너지 수확 장치는 외부 가진력의 주파수가 장치의 고유 진동수 (또는 공진 주파수)와 일치하는 경우 최대 전력을 발생시키지만, 이를 벗어난 주파수 대역에서는 전력 발생량이 급격히 감소한다. 그런데, 에너지 수확 장치의 고유 진동수는 시간이 지남에 따라 변할 수 있으며, 가진 주파수 역시 어떤 일정한 값에 항상 고정되어 있는 경우는 드물다. 따라서, 이를 해결하기 위해 본 연구에서는 일정한 공진 대역폭을 갖는 압전 에너지 수확 모듈을 제안하였고 해석 및 실험을 통하여 전기 출력에 대한 주파수 대역특성을 파악하였다. 또한, 제안된 모듈을 구성하는 개별 에너지 수확 단위간의 전기적 연결 방법에 따라서 전기출력이 최대화되는 공진 주파수가 조절될 수 있음을 보였다.

Keywords

References

  1. Roundy, S., Wright, P. K. and Rabaey, J., 2003, "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes," Computer Communications, Vol. 26, No. 11, pp. 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  2. Beeby, S. P., Tudor, M. J. and White, N. M., 2006, "Energy Harvesting Vibration Sources for Microsystems Applications," Measurement Science and Technology, Vol. 17, No. 12, pp. R175-R195. https://doi.org/10.1088/0957-0233/17/12/R01
  3. Priya, S. and Inman, D. J., 2009, Energy Harvesting Technologies, Springer Science+Business Media, LLC, New York.
  4. Mitcheson, P. D., Miao, P., Stark, B. H., Yeatman, E. M., Holmes, A. S. and Green, T. C., 2004, "MEMS Electrostatic Micropower Generator for Low Frequency Operation," Sensors and Actuators A: Physical, Vol. 115, pp. 523-529. https://doi.org/10.1016/j.sna.2004.04.026
  5. Glynne-Jones, P., Tudor, M. J., Beeby, S. P. and White, N. M., 2004, "An Electromagnetic, Vibration- Powered Generator for Intelligent Sensor Systems," Sensors and Actuators A: Physical, Vol. 110, pp. 344-349. https://doi.org/10.1016/j.sna.2003.09.045
  6. Wang, L. and Yuan, F. G., 2008, "Vibration Energy Harvesting by Magnetostrictive Material," Smart Materials and Structures, Vol. 17, No. 4, 045009. https://doi.org/10.1088/0964-1726/17/4/045009
  7. Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K. and Sundararajan, V., 2005, "Improving Power Output for Vibration-Based Energy Scavengers," IEEE Pervasive Computing, Vol. 4, No. 1, pp. 28-36. https://doi.org/10.1109/MPRV.2005.14
  8. Cho, S.-W., Son, J.-D., Yang, B.-S. and Choi, B.-K., 2009, "Vibration-Based Energy Harvester for Wireless Condition Monitoring System," Trans. of the KSNVE, Vol. 19, No. 4, pp. 393-399. https://doi.org/10.5050/KSNVN.2009.19.4.393
  9. Feng, G.-H. and Hung, J.-C., 2008, "Development of Wide Frequency Range-Operated Micromachined Piezoelectric Generators Based on Figure-of-Merit Analysis," Microsystem Technologies, Vol. 14, No. 3, pp. 419-425. https://doi.org/10.1007/s00542-007-0538-3
  10. Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, M. and Taroni, A., 2008, "Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems," Sensors and Actuators A: Physical, Vol. 142, No. 5, pp. 329-335. https://doi.org/10.1016/j.sna.2007.07.004
  11. Liu, J.-Q., Fang H.-B., Xu, Z.-Y., Mao, X.-H., Shen, X.-C., Chen, D., Liao, H. and Cai, B.-C., 2008, "A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting," Microelectronics Journal, Vol. 39, No. 5, pp. 802-806. https://doi.org/10.1016/j.mejo.2007.12.017
  12. Kim, J. E., Ryu, J. C. and Kim, Y. Y., 2009, "Energy Harvester," Korea Patent Application No. 10-2009- 0017773.
  13. Kim, J. E., Ryu, J. C., Ma, P. S. and Kim, Y. Y., 2009, "Energy Harvester Unit Module, Multi-Axis Energy Harvester Assembly Made from the Same, and Multi-Axis Energy Harvester Multi-Assembly Made from the Same," Korea Patent Application No. 10- 2009-0044119.
  14. Goldschmidtboeing, F. and Woias, P., 2008, "Characterization of Different Beam Shapes for Piezoelectric Energy Harvesting," Journal of Micromechanics and Microengineering, Vol. 18, No. 10, 104013. https://doi.org/10.1088/0960-1317/18/10/104013
  15. duToit, N. E., Wardle, B. L. and Kim, S.-G., 2005, "Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibrational Energy Harvesters," Integrated Ferroelectrics, Vol. 71, pp. 121-160. https://doi.org/10.1080/10584580590964574
  16. Kim, J. E. and Kim, Y. Y., 2010, "Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio with a Distributed Tip mass," Journal of Vibration and Acoustics, in review.
  17. Renno, J. M., Daqaq, M. D. and Inman, D. J., 2009, "On the Optimal Energy Harvesting from a Vibration Source," Journal of Sound and Vibration, Vol. 320, No. 1-2, pp. 386-405. https://doi.org/10.1016/j.jsv.2008.07.029
  18. Liao, Y. and Sodano, H. A., 2008, "Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation," Smart Materials and Structures, Vol. 17, No. 6, 065026. https://doi.org/10.1088/0964-1726/17/6/065026
  19. Kim, J. E., Ryu, J. C. and Kim, Y. Y., 2010, "Piezoelectric Energy Harvester and Frequency Tuning Method for the Same," Korea Patent Application No. 10-2010-0025307.
  20. Park, S., Lee J.-J., Yun, C.-B. and Inman, D. J., 2008, "A Built-in Active Sensing System-Based Structural Health Monitoring Technique Using Statistical Pattern Recognition," Journal of Mechanical Science and Technology, Vol. 21, No. 6, pp. 896-902. https://doi.org/10.1007/BF03027065

Cited by

  1. Pedestrian walking characteristics at stairs according to width change for application of piezoelectric energy harvesting vol.19, pp.3, 2012, https://doi.org/10.1007/s11771-012-1069-3
  2. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester vol.37, pp.8, 2013, https://doi.org/10.3795/KSME-A.2013.37.8.983
  3. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices vol.39, pp.5, 2015, https://doi.org/10.3795/KSME-A.2015.39.5.499