Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes

배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링

  • 김동주 (부산대학교 컴퓨터공학과) ;
  • 김태훈 (부산대학교 컴퓨터공학과) ;
  • 탁성우 (부산대학교 정보컴퓨터공학부)
  • Received : 2010.04.01
  • Accepted : 2010.10.05
  • Published : 2010.10.30

Abstract

Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

무선 센서 네트워크를 구성하는 센서 노드는 배터리 기반의 제한된 전원과 낮은 연산 능력의 초경량 마이크로프로세서, 그리고 제한된 크기의 메모리 자원 등과 같은 하드웨어 사양을 가지고 있다. 이와 같은 제약 사항에도 불구하고 무선 센서 노드는 센싱 데이터의 실시간 처리 및 데이터 송수신 작업을 동시에 병행할 수 있어야 한다. 이에 본 논문에서는 배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링 기법을 제안하였다. 제안한 에너지 효율적인 실시간 스케줄링 가법은 태스크의 실제 실행시간이 최악 실행시간보다 작을 경우에 발생되는 태스크의 실행 여유시간을 이용하여, 마이크로프로세서의 동작 주파수를 조절하고 무선 센서 노드의 전력 소비를 줄인다. 제안한 기법의 동작을 시험한 결과, 효율적인 전력 소비를 제공함과 동시에 실시간 태스크의 마감시한이 보장됨을 확인하였다.

Keywords

References

  1. V. Raghunathan, C. Schurgers, S. Park, and M.B. Srivastava, "Energy-aware wireless microsensor networks," IEEE Signal Processing Magazine, Vol. 1, No.2, pp. 40-50, 2002.
  2. R Ernst and W. Ye, "Embedded Program Timing Analysis Based on Path Clustering and Architecture Classification," IEEE/ ACM International Conference on Computer-aided Design, pp. 598-604, 1997.
  3. T.A. Pering, T.D. Burd, and R.W. Brodersen, "The simulation and evaluation of dynamic voltage scaling algorithms," International Symposium on Low Power Electronic Design, pp. 76 81, 1998 .
  4. H. Aydin, R G. Melhem, D, Mosse, and P. Mejia-Alvarez, "Power aware scheduling for periodic real-time tasks. IEEE Transaction on Computers, Vol. 53, No.5, pp. 584 - 600, 2004. https://doi.org/10.1109/TC.2004.1275298
  5. M. Weiser, B. Welch, A Demers, and S. Shenker, "Scheduling for reduced CPU energy," Symposium on Operating Systems Design and Implementation, pp. 13-23, 1994.
  6. K. Govil, E. Chan, and H. Wasserman, "Comparing algorithms for dynamic speed-setting of a low-power CPU," International Conference on Mobile Computing and Networking, pp. 13-25, 1995.
  7. P. Pillai and K.G. Shin, "Real-Time dynamic voltage scaling for low-power embedded operating systems," ACM symposium on Operating Systems Principles, pp. 89-102, 2001.
  8. X. Zhong and C. Z. Xu, "Energy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guarantee," IEEE Transactions on Computer, Vol. 56, No. 3, pp. 358-372, 2007. https://doi.org/10.1109/TC.2007.48
  9. M. Kargahi and A. Movaghar, "Stochastic DVS-based dynamic power management for soft real-time systems," Microprocessors and Microsystems, Vol. 3, No.2, pp. 121-144, 2008.
  10. A. Manzak and C. Chakrabarti, "Variable voltage task scheduling algorithms for minimizing energy/power," IEEE Transactions on Very Large Scale Integration Systems, Vol. 11, No.2, pp. 270-276, 2003. https://doi.org/10.1109/TVLSI.2003.810801
  11. W. C. Kwon and T. Kim, "Optimal voltage allocation techniques for dynamically variable voltage processors," ACM Transactions on Embedded Computing Systems, Vol. 4, No.1, pp. 211-230, 2005. https://doi.org/10.1145/1053271.1053280
  12. V. Swaminathan and K Chakrabarty, "Network flow techniques for dynamic voltage scaling in hard real-time systems," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 23, No. 10, pp. 1385-1398, 2004. https://doi.org/10.1109/TCAD.2004.833621
  13. P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and D. Culler, "The emergence of networking abstractions and techniques In TinyOS," USENlX/ ACM Symposium on Networked Systems Design and Implementation, pp. 1-14, 2004.
  14. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A Sheth, and B. Shucker, "MANTIS OS:An Embedded Multithreaded Operating System for Wireless Micro Sensor Platforms," Mobile Networks and Applications Journal, Vol. 10, No.4, pp. 563-579, 2005. https://doi.org/10.1007/s11036-005-1567-8
  15. T.J. Hofmeijer, S.O. Dullman, P. G. Jansen, and P. J. Havinga, "DCOS, A Real-time Lightweight Data Centric Operating System," International Conference on Advances in Computer Science and Technology, pp. 259-264, 2004.
  16. P. Ganesan and A.G. Dean, "Enhancing the AvrX kernel with efficient secure communication using software thread integration," Real-Time and Embedded Technology and Applications Symposium, pp. 265-275, 2004.
  17. K. Jeffay and C.U. Martel, "On Non-preemptive Scheduling of Periodic and Sporadic Tasks," IEEE Real-Time Systems Symposium, pp. 129-139, 1991.
  18. L. Georges, P. Muehlethaler, and N.Rivierre, "A Few Results on Non-preemptive Real-Time Scheduling," INRIA Research Report nRR- 3926,2000.
  19. C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, "Improving the energy efficiency of the MANTIS kernel," IEEE European Workshop on Wireless Sensor Networks, pp. 261-276, 2007.