DOI QR코드

DOI QR Code

나노입자 코팅 탄소섬유 강화 복합재료의 전기전도도 향상

Improvement of Electrical Conductivity of Carbon-Fiber Reinforced Plastics by Nano-particles Coating

  • 서성욱 (인하대학교 대학원 기계공학과) ;
  • 하만석 (인하대학교 대학원 기계공학과, (주)삼성전자 OMS 연구소) ;
  • 권오양 (인하대학교 기계공학부) ;
  • 최흥섭 ((주)대한항공 R&D Center)
  • 발행 : 2010.12.31

초록

복합재 항공기 동체의 낙뢰손상방지를 목적으로 탄소섬듐-주석 산화물(ITO) 나노입자를 코팅함으로써 탄소섬유강화플라스틱(CFRP) 복합재료의 전기전도도를 향상하였다. 탄소섬유에 코팅된 ITO 나노입자는 10~40%의 농도로 콜로이드 상태에서 분사되었다. CFRP의 전기전도도는 코팅 후 3배 이상 증가하였으며 현재 B-787 복합재 항공기 동체에 사용 중인 기술인 금속메쉬를 CFRP 외층에 매몰한 경우보다도 높은 전기전도도를 얻을 수 있었으며, 나노입자 코팅으로 섬유-기지 계면에 미지는 악영향은 발견되지 않았다. 모의 낙뢰에 의한 손상영역은 각각 다른 처리를 한 재료와 조건에 따라 초음파 C-scan 이미지로 확인하였다. ITO 40% 코팅 시편의 경우 전기전도도는 B-787 샘플의 경우보다 높았지만 낙뢰에 의한 손상영역의 크기는 거의 비슷한 수준이었다.

The electrical conductivity of carbon-fiber reinforced plastics (CFRP's) has been improved by indium-tin oxide (ITO) nano-particle coating on carbon fibers for the purpose of lightning strike protection of composite fuselage skins. ITO nano-particles were coated on the surface of carbon fibers by spraying the colloidal suspension with 10~40% ITO content. The electrical conductivity of the CFRP has been increased more than three times after ITO coating, comparable to or higher than that of B-787 composite fuselage skins with metal wire-meshes on the outer surface, without sacrificing the tensile property due to the existence of nano-particles at fiber-matrix interface. The damage area by the simulated lightning strike was also verified for different materials and conditions by using ultrasonic C-scan image. As the electrical conductivity of 40% nano-ITO coated sample surpass that of the B-787 sample, the damage area by lightning strike also appeared comparable to that of the materials currently employed for composite fuselage construction.

키워드

참고문헌

  1. C. A. Mahieux, "Cost effective manufacturing process of thermoplastic matrix composites for the traditional industry: the example of carbon-fiber reinforced thermoplastic flywheel," Composite Structures, Vol 52, 2001, pp. 517-521. https://doi.org/10.1016/S0263-8223(01)00041-1
  2. Qian. D, Bao. L, Takatera. M, Kemmochi. K, and Yamanaka. A, "Fiber-reinforced polymer composite materials with high specific strength and excellent solid particle erosion resistance," Wear, Vol. 268, No. 3-4, 2010, pp. 637-642. https://doi.org/10.1016/j.wear.2009.08.038
  3. Gou. J, Tang. Y, Liang. F, Zhao. Z, Firsich. D, and Fielding. J, "Carbon nanofiber paper for lightning strike protection of composite materials," Composites Part B: Engineering, Vol. 41, No. 2, 2010, pp. 192-198. https://doi.org/10.1016/j.compositesb.2009.06.009
  4. Oh. J, Oh. K, Kim. C, and Hong. C, "Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges," Composites Part B: Engineering, Vol. 35, No. 1, 2004, pp. 49-56. https://doi.org/10.1016/j.compositesb.2003.08.011
  5. Jin-Bong Kim, Sang-Kwan Lee, Chun-Gon Kim, "A Study on Carbon Nano Materials as Conductive Fillers for Microwave Absorbers," J of the Korean Society for Composite Materials, Vol. 19, No. 5, 2006, pp. 28-33.
  6. F. A. Fisher, J. A. Plumer, R. A. Perala, "Aircraft Lightning Protection Handbook," Federal Aviation Administration, 1989.
  7. Min-Seok Ha, Oh-Yang Kwon, Heung-Soap Choi, "Improved Electrical Conductivity of CFRP by Conductive Nano-Particles Coating for Lightning Strike Protection," J. of the Korean Society for Composite Materials, Vol 23, No. 2, 2010, pp. 31-36. https://doi.org/10.7234/kscm.2010.23.2.031
  8. V. I. Roldughin and V. V. Vysotskii, Prog. Organic Coatings. Vol. 39, 2000, pp. 81- https://doi.org/10.1016/S0300-9440(00)00140-5

피인용 문헌

  1. Experimental and Numerical Study of Heating Characteristics of Discontinuous Carbon Fiber-Epoxy Composites vol.26, pp.1, 2013, https://doi.org/10.7234/kscm.2013.26.1.72
  2. Compression-after-Impact Testing of CFRP Laminates Subjected to Simulated Lightning Damage Monitored by Acoustic Emission vol.224, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.224.73