Preparation and Release Property of Alginate Beads Immobilizing Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)

Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)가 고정화된 알지네이트 비드 제조 및 방출 특성

  • Kang, Mi-Kyoung (School of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University) ;
  • Kim, Jin-Chul (School of Biotechnology & Bioengineering and Institute of Bioscience and Biotechnology, Kangwon National University)
  • 강미경 (강원대학교 생명공학부 생물소재공학) ;
  • 김진철 (강원대학교 생명공학부 생물소재공학)
  • Published : 2010.01.25

Abstract

Alginate beads were prepared using poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)(P(NIPAM-co-DMAEMA)). First, P(NIPAM-co-DMAEMA) was immobilized on the surface of alginate beads by taking advantage of electrostatic interaction between alginate and P(NIPAM-co-DMAEMA). Second, P(NIPAM-co-DMAEMA) was contained in the matrix of alginate beads. P(NIPAM-co-DMAEMA) were prepared by a free radical polymerization at $74^{\circ}C$ for 12 h. The weight ratio of NIPAM to DMAEMA monomer was 95/5. The copolymer was identified by $^1H$-NMR. Releases from the alginate beads were observed at 30, 37, and $45^{\circ}C$ using blue dextran or FITC-dextran(fluorescein isothiocyanate-dextran) as a model drug. The effect of temperature on the degree of release from the beads was insignificant. FITC-dextran was released more than blue dextran possibly due to its smaller molecular weight.

Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)(P(NIPAM-co-DMAEMA))가 고정화된 알지네이트 비드를 제조하였다. 알지네이트와 P(NIPAM-co-DMAEMA)의 정전기적 인력을 이용하여 P(NIPAM-co-DMAEMA)로 코팅된 알지네이트 비드와 P(NIPAM-co-DMAEMA)을 함유한 알지네이트 비드를 제조하였다. P(NIPAM-co-DMAEMA)은 자유 라디칼 반응으로 제조하였고 핵자기 공명분광기를 통해 확인하였다. 비드의 온도 민감성 방출 거동을 관찰하였으며, 모델시약으로 blue dextran과 fluorescein isothiocyanate-dextran을 사용하였다. P(NIPAM-co-DMAEMA)가 고정화된 알지네이트 비드로부터의 방출 정도는 온도 의존성이 낮았고, 방출모델시약의 분자량이 작을수록 더 높았다.

Keywords

References

  1. V. Pillay and R. Fassihi. J. Control Rel, 55, 243 (1999).
  2. S. R. Kim, S. H. Yuk, and M. S. Jhon, Eur. Polym. J., 33, 1009 (1997) https://doi.org/10.1016/S0014-3057(96)00301-1
  3. H. Ertesvag and S. Valla, Polym. Degrad Stabil., 59, 85 (1998). https://doi.org/10.1016/S0141-3910(97)00179-1
  4. P. D. Vos, B. D. Haan, and R. V. Schilfgaarde, Biomaterials, 18, 273 (1997). https://doi.org/10.1016/S0142-9612(96)00135-4
  5. J. H. Choi, H. Y. Lee, and J.-C. Kim, J. Appl. Polym. Sci., 110, 117 (2008). https://doi.org/10.1002/app.28620
  6. E. Roux, C. Passirani, S. Scheffold, J. P. Benoit, and J. C. Leroux, J. Control. Rel., 94, 447 (2004). https://doi.org/10.1016/j.jconrel.2003.10.024
  7. M. H. Kim, J.-C. Kim, H. Y. Lee, J. D. Kim, and J. H. Yang, Colloid Surf. B-Biointerfaces, 46, 57 (2005) https://doi.org/10.1016/j.colsurfb.2005.09.002
  8. H. D. Han, M. S. Choi, T. W. Hwang, C. K. Song, H. S. Seong, T. W. Kim, H. S. Choi, and B. C. Shin, J. Pharm. Sci, 95, 1909 (2006). https://doi.org/10.1002/jps.20646
  9. C-J. Cheng, L.-Y. Chu, J. Zhang, M.-Y. Zhou, and R. Xie, Desalination, 234, 184 (2008). https://doi.org/10.1016/j.desal.2007.09.085
  10. K. Yamashita, T. Nishimura, and M. Nango, Polym. Adv.Technol., 14, 189 (2003). https://doi.org/10.1002/pat.290
  11. D. Duracher, A. ElaoEssari, and C. Pichot, Colloid Polym. Sci, 277, 905 (1999). https://doi.org/10.1007/s003960050470
  12. J. Zhang, L.-Y. Chu, Y-K. Li, and Y. M. Lee, Polymer, 48, 1718 (2007). https://doi.org/10.1016/j.polymer.2007.01.055
  13. W. Yin, M. Chen, T. Lu, M. Akashi, and X. Huang, Eur. Polym. J., 42, 2523 (2006). https://doi.org/10.1016/j.eurpolymj.2006.06.012
  14. J. Shi, N. M. Alves, and J. F. Mano, J. Biomed Mater. Res. Part B, 84, 595 (2008).
  15. K. Kono, R. Nakai, K. Morimoto, and T. Takagishi, Biochim. Biophys. Acta., 1416, 239 (1999) https://doi.org/10.1016/S0005-2736(98)00226-0
  16. H. Hayashi, K. Kono, and T. Takagishi, Biochim. Biophys. Acta., 1280, 127 (1996). https://doi.org/10.1016/0005-2736(95)00273-1
  17. J. C. Kim, S. K. Bae, and J. D. Kim, Biochem., 121, 15 (1997). https://doi.org/10.1093/oxfordjournals.jbchem.a021558
  18. K. Kono, A. Henmi, H. Yamashita, H. Hayashi, and T. Takagishi, J. Control Rel., 59, 63 (1999) https://doi.org/10.1016/S0168-3659(98)00180-1
  19. J. H. Choi, H. Y. Lee, J. C. Kim, and Y. C. Kim, J. Ind Eng. Chem., 13, 380 (2007).
  20. J. Hua, Y. Liu, J. Hu, Q. Wang, Z. Gong, and X. Guo, J. Appl. Polym. Sci, 74, 2457 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2457::AID-APP14>3.0.CO;2-X
  21. J. H. Choi, H. Y. Lee, and J. C. Kim, J. Appl. Polym. Sci, 108, 3707 (2008) https://doi.org/10.1002/app.27862
  22. J. Zhang, R. Xie, S.-B. Zhang, C.-J. Cheng, X.-J. Ju, and L.-Y. Chu, Polymer 50, 2516 (2009). https://doi.org/10.1016/j.polymer.2009.03.044
  23. H. Feil, Y. H. Bae, J. Feijen, and S. W. Kim, Macromolecules, 26, 2496 (1993). https://doi.org/10.1021/ma00062a016
  24. S. R. van Tomme, M. J. van Steenbergen, S. C. de Smedt, C. F. van Nostrum, and W. E. Hennink, Biomaterials, 276, 2129 (2005).
  25. X. Yang, H. Y. Lee, and J.-C. Kim, J. Macromol. Sci. Part A -Pure Appl. Chem., 46, 959 (2009) https://doi.org/10.1080/10601320903158305
  26. D. Karlsson, G. Zacchi, and A. Axelsson, Biotechnol. Prog., 18, 1423 (2002).
  27. M. T. Ende and N. A. Peppas, J. Control Rel., 48, 47 (1997). https://doi.org/10.1016/S0168-3659(97)00032-1