Implementation and Empirical Evaluation of Indoor Localization in IEEE 802.15.4 Network

IEEE 802.15.4 네트워크 기반의 실내 위치측정 시스템 구현 및 실험적 분석

  • 김태운 (광주과학기술원 정보통신공학과 무선통신 및 네트워킹 연구실) ;
  • 최우열 (광주과학기술원 정보통신공학과 무선통신 및 네트워킹 연구실) ;
  • 임혁 (광주과학기술원 정보통신공학과 무선통신 및 네트워킹 연구실)
  • Published : 2010.01.31

Abstract

Currently, geographical information is interpreted and adopted in a wide range of context, and used for meeting diverse demands, such as, battlefield, traffic management, or public safety. With such an explosive increase of location-based applications, a considerable amount of research on the localization technique has been carried out. Among them, RSS (Received Signal Strength)-based approach is used especially for the indoor localization due to intrinsic limitations of the indoor environment. In this paper, we perform theoretical and empirical studies on enhancing the accuracy of the RSS-based localization on the IEEE 802.15.4 network. To this end, we set up an indoor testbed and implement a localization system on it. In addition to the theoretical analysis of the localization algorithm that we used, an empirical analysis on the effect of the factors which affect the accuracy of a localization system is carried out. Finally, we suggest some critical guidelines that should be considered for building a highly accurate localization system.

현재, 위치/공간 정보는 다양한 맥락으로 해석 및 적용되어 군사, 교통, 공공안전 등 여러 분야에 광범위하게 사용되고 있으며, 이와 함께 위치측정 기술의 정확도 향상을 위한 기술적 연구도 활발히 진행 중이다. 그 중, 상대적으로 제약조건이 많은 실내 위치측정의 경우 RSS (Received Signal Strength) 기반의 위치측정 기술이 주로 사용된다. 본 논문은 IEEE 802.15.4 네트워크에서 RSS 기반의 실내 위치측정기술의 정확도 향상에 대한 이론적, 실험적 연구를 수행하였다. 이를 위해 CC2430 칩을 이용하여 자체 제작한 노드와 CC2420 기반의 MICAz 노드로 실내 테스트베드를 구성하였고, 또한 위치측정 시스템 및 모니터링 시스템을 구현하여 실험에 사용하였다. 실험에 사용된 위치측정 시스템의 이론적 분석 뿐 아니라, 다양한 조건하에 수행된 실험결과를 바탕으로 실험결과에 영향을 미치는 요소들에 대한 다각적인 분석을 수행하였다. 이를 통하여, 제한된 환경에서 최적의 위치측정 시스템을 구성하기 위한 해결책을 제시한다.

Keywords

References

  1. Hyuk Lim, Lu-Chuan Kung, Jennifer C. Hou, and Haiyun Luo, "Zero-configuration, robust indoor localization: Theory and experimentation," IEEE INFOCOM 2006, Barcelona, Spain, April 23-29, 2006.
  2. R. Want, A. Hopper, V. Falcao, and J. Gibbons, "The active badge location system," ACM Transactions on Information Systems, vol. 10, no. 1, pp. 91-102, January 1992. https://doi.org/10.1145/128756.128759
  3. A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, "The anatomy of a context-aware application," in Proc. of ACM MOBICOM, 1999.
  4. N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, "The Cricket location-support system," in Proc. of ACM MOBICOM, 2000.
  5. N. B. Priyantha, A. K. Miu, H. Balakrishnan, and S. Teller, "The Cricket compass for context-aware mobile applications," in Proc. of ACM MOBICOM, 2001.
  6. "Ubisense," http://www.ubisense.net/
  7. D. Niculescu and B. Nath, "VOR base stations for indoor 802.11 positioning," in Proc. of ACM MOBICOM, 2004.
  8. "Pinpoint," http://www.pinpoint.com/
  9. T. Li, A. Ekpenyong, and Y.-F. Huang, "A location system using asynchronous distributed sensors," in Proc. of IEEE INFOCOM, 2004.
  10. P. Bahl and V. N. Padmanabhan, "RADAR: An in-building rf-based user location and tracking system," in Proc. of IEEE INFOCOM, 2000.
  11. P. Bahl, V. N. Padmanabhan, and A. Balachandran, "Enhancements to the RADAR user location and tracking system," Microsoft Research, Tech. Rep. MSR-TR-2000-12, February 2000.
  12. M. Youssef and A. Agrawala, "Small-scale compensation for WLAN location determination systems," in Proc. of WCNC, 2003.
  13. P. Castro, P. Chiu, T. Kremenek, and R. Muntz, "A probabilistic room location service for wireless networked environments," in Proc. of Ubiquitous Computing, 2001.
  14. A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach, and L. E. Kavraki, "Practical robust localization over large-scale 802.11 wireless networks," in Proc. of ACM MOBICOM, 2004.
  15. P. Krishnan, A. Krishnakumar, W.-H. Ju, C. Mallows, and S. Ganu, "A system for LEASE: Location estimation assisted by stationary emitters for indoor RF wireless networks," in Proc. of IEEE INFOCOM, 2004.
  16. A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E. Kavraki, and D. S. Wallach, "Robotics-based location sensing using wireless ethernet," in Proc. of ACM MOBICOM, 2002.
  17. P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallach, "Wireless LAN location-sensing for security applications," in Proc. of ACM Workshop on Wireless Security, 2003.
  18. S. Ganu, A. S. Krishnakumar, and P. Krishnan, "Infrastructure-based location estimation in WLAN networks," in Proc. of WCNC, 2004.
  19. Y. Gwon and R. Jain, "Error characteristics and calibration-free techniques for wireless LAN-based location estimation," in Proc. of ACM MobiWac, October 2004.
  20. Kannan Srinivasan and Philip Levis, "RSSI is Under Appreciated," Third Workshop on Embedded Networked Sensors (EmNets 2006), 2006.
  21. IEEE Std 802.15.4-2006. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 2006, pp,65.
  22. Texas Instrument. Web: http://www.ti.com
  23. Texas Instrument. CC2430 Data Sheet. Available at web: http://www.ti.com/lit/gpn/cc2430
  24. CrossBow Technology. Available at web: http://www.xbow.com