DOI QR코드

DOI QR Code

A study on an interval of tunnel cross passage considering inclination and internal airflow

터널 내부 기류 변화에 따른 피난연락갱 간격 설정에 관한 연구

  • 이동호 (인천대학교 안전공학과) ;
  • 김하영 (인천대학교 안전공학과 대학원) ;
  • 유지오 (신흥대학 건축설비설계과)
  • Published : 2010.01.31

Abstract

The escape connecting gallery in a tunnel on a road is one of emergency equipment to ensure safety for passer in the tunnel against the tunnel fire. Government stipulate over 500m tunnel has the cross passage at intervals of less then 250 m. However, this lump estimated interval is generated the concerns of exaggeration and under construction because peculiarity of the tunnel ex. The velocity of the tunnel airflow, an incline, degree of a fire, and innering area are not considered. The study indicate the way to estimate of the cross passage considered an incline and the velocity of the tunnel airflow for efficient application of cross passage on the tunnel design. As a result, in 0.0 m/s and 1.0 m/s of the velocity of the tunnel airflow case, the movement of smoke is influenced by the incline however, in 20 m/s case, it isn't influenced by incline much. According to the velocity of tunnel airflow and the incline, optimum interval of cross passage is not corresponded. Therefore established lump estimate that has 250 m intervals would be changed to estimate of optimum interval of cross passage that considered about the properties of tunnel, the velocity of the tunnel airflow, incline, degree of a fire and innering area of the tunnel.

도로터널내의 피난연락갱은 화재시 터널내 통행자의 안전성 확보를 위한 방재시설 중 하나이며 국내의 경우 500 m이상 터널에서는 250 m 간격 이하로 설치하도록 규정하고 있다. 그러나 이러한 일괄적인 피난연락갱 간격 산정은 터널내 풍속이나 구배, 화재강도 및 터널의 내공단면적 등 터널의 특성에 대한 고려가 되지 않기 때문에 과대 및 과소 설비가 될 우려가 발생한다. 본 연구에서는 터널 내 풍속 및 구배의 영향을 고려한 피난연락갱 적정간격 산정 방식을 제시하여 터널 설계시 피난연락갱의 효율적인 적용을 목표로 한다. 결과로 터널내 풍속이 0 m/s와 1.0 m/s의 경우 구배에 의한 영향이 뚜렷한 것으로 분석되었으나 2.0 m/s 이상의 경우 터널내 구배에 의한 연기의 이동은 큰 영향을 미치지 못하는 것으로 나타났다. 터널 내부 기류속도 및 터널 구배에 따른 적정 피난연락갱 간격이 상이하게 나타나 250 m 간격인 기존의 일괄적인 피난연락갱 간격 산정이 아닌 터널 내 풍속이나 구배, 화재강도 및 터널의 내공단면적 등 터널의 특성에 대한 고려값을 적용한 적정 피난연락갱 산정이 필요하다.

Keywords

References

  1. 국토해양부 (2008), 도로터널 방재시설 설치 및 관리 지침. 행정간행물등록번호 11-1611000-000411-01, pp. 63-67.
  2. 김정엽, 신현준, 강세구, 안경철 (2004), 도로터널 화재 발생시 연기유동에 관한 축소모형실험 연구, 터널기술, 한국터널공학회 논문집, 제6권, 제2호, pp. 141-148.
  3. 김종윤 (2007), 터널화재 시 임계풍속 산정 및 제연특성연구, 인하대학교.
  4. 김하영, 이동호, 김전엽 (2008), 지하철 승강장 급배기 조건에 따른 화재 위험성 평가, 한국화재소방학회 논문지, 제22권, 제5호.
  5. 유흥선, 양승신 (2005), 터널 화재시 배연속도가 연소율 변화에 미치는 실험적 연구, 터널기술, 한국터널공학회 논문집, 제7권, 제2호, pp. 119-131.
  6. 이동호, 김하영, 문성웅, 유지오 (2009), 터널 내 화재 시 경사에 따른 온도층 및 연구유동 특성, 터널기술, 한국터널공학회 논문집, 제11권, 제3호, pp. 221-228.
  7. 이창민, 성화경, 김정룡, 유재우, 남윤자, 김구자, 최경미, 황민철, 정의승 (2004), 제5차 한국인 인체치수조사사업보고서(2차년도 최종보고서), 산업자원부 기술표준원.
  8. Bettelini, B. and Henke, A. (2003), Upgrading the Ventilation of the Gotthard road tunnel, 11th Int. Sym. on the Aero. and Ventilation of Vehicle Tunnels, BHRGroup, pp. 29-45.
  9. Baum. H. R. and MaCaffery, B. J. (1989), Fire Insuced Flow Field-Theory and Experiment, Fire Safety Science Proceedings of the Second International Symposium, pp. 129-148.
  10. Erika Ivarson (1994), Proceedings of the International Conference on Fires in Tunnels SP-Swedish National Testing and Research Institute, Sweden.
  11. Haukur Ingason (2006), Design fires in tunnels, Safe & Reliable Tunnels. Innovative European Achievements, Second International Symposium, pp.42.
  12. Kevin McGrattan, Glenn Forney (2005), Fire Dynamics Simulator (Bersion 4) User's Guide, NIST, USA.
  13. Mott MacDonald (2006), Ventilation during road tunnel emergencies, TRL Limited, pp. 42.
  14. NFPA (2005), NFPA 92B Standard for Smoke Management Systems in Malls, Atria, and Large Spaces, Quincy, MA, USA.
  15. NFPA (2008), NFPA 502 Standard for Road Tunnels, Bridges, and Other Limited Access Highways, Quincy, MA, USA.
  16. PIARC (1999), Fire and smoke control in road tunnels, Report of the WG 6 of the Road Tunnels Committee of the PIARC.
  17. RABT (2002), Richtlinien fur die Ausstattung und den Betrieb von StraBentunneln (RABT), Germany.