References
- Alexopoulos, C., C. Mims, and M. Blackwell. 1996. Introductory Mycology. Wiley & Sons, Inc., New York.
- Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60. https://doi.org/10.1021/np9604893
- Ellis, M. and J. P. Ellis. 1998. Microfungi on Miscellaneous Substrates. Richmond Publishing Co. Ltd., Slough.
- Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
- Frisvad, J. C. and D. Filtenborg. 1989. Terverticillate penicilia: Chemotaxonomy and mycotoxin production. Mycol. 81: 837-861. https://doi.org/10.2307/3760103
- Hamayun, M., S. A. Khan, N. Ahmad, D. S. Tang, S. M. Kang, C. I. Na, et al. 2009. Cladosporium sphaerospermum as a new plant growth promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 25: 627-632. https://doi.org/10.1007/s11274-009-9982-9
- Hamayun, M., S. A. Khan, H. Y. Kim, M. F. Chaudhary, Y. H. Hwang, D. H. Shin, I. K. Kim, B. H. Lee, and I. J. Lee. 2009. Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J. Microbiol. Biotechnol. 19: 560-565. https://doi.org/10.4014/jmb.0809.520
- Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101-106.
- Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67: 371-376. https://doi.org/10.1128/AEM.67.1.371-376.2001
- Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590 https://doi.org/10.1271/bbb.70.583
- Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
- Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a new strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833. https://doi.org/10.1007/s11274-009-9981-x
- Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, et al. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnol. Lett. 31: 283-287. https://doi.org/10.1007/s10529-008-9862-7
- Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate species-specific detection of Phytophthora infestans through analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655.
- Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J. Microbiol. Biotechnol. 11: 515-523.
- Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011. https://doi.org/10.1104/pp.116.3.1003
- MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.
- Malinowski, D. P. and D. P. Belesky. 1999. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 22: 835-853. https://doi.org/10.1080/01904169909365675
- Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant: Three-way symbioses required for thermal tolerance. Science 315: 513-515. https://doi.org/10.1126/science.1136237
- Martin, G. C. 1983. Commercial uses of gibberellins, pp. 395-444. In A. Crozier (ed.). The Biochemistry and Physiology of Gibberellins, Vol. 2. Preager, New York.
- Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206.
- O'Donnell, K., E. Cigelnik, and H. L. Nirenberg. 1998. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90: 465-493. https://doi.org/10.2307/3761407
- Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48. https://doi.org/10.1016/S0960-9822(00)00292-X
- Pitt, J. I. 1988. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde, NSW.
- Reis, V. M., J. I. Baldani, V. L. D. Baldani, and J. Dobereiner. 2000. Biological nitrogen fixation in Gramineae and palm trees. Crit. Rev. Plant Sci. 19: 227-247. https://doi.org/10.1016/S0735-2689(00)80003-9
- Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533. https://doi.org/10.1248/jhs.49.531
- Takahashi, N., B. O. Phinney, and J. MacMillan. 1991. Gibberellins. Springer, New York.
- Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
- Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol. 7: 65. https://doi.org/10.1186/1471-2229-7-65
- Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. U.S.A. 102: 13386-13391. https://doi.org/10.1073/pnas.0504423102
- Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50. https://doi.org/10.1007/BF02463974
- Zou, W. X. and R. X. Tan. 1999. Advances in Plant Science pp 183-190, Vol. 2 China Higher Education Press, Beijing.
Cited by
- Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L vol.21, pp.9, 2011, https://doi.org/10.4014/jmb.1103.03012
- Gibberellin producing Neosartorya sp. CC8 reprograms Chinese cabbage to higher growth vol.129, pp.3, 2010, https://doi.org/10.1016/j.scienta.2011.03.046
- Endophytes and their role in phytoremediation vol.54, pp.1, 2010, https://doi.org/10.1007/s13225-012-0165-x
- Postharvest quality and physiological responses of clove bud extract dip on ‘Newhall’ navel orange vol.138, pp.None, 2012, https://doi.org/10.1016/j.scienta.2012.02.036
- Effect of Penicillium Extractsa on Germination Vigor in Subsequent Seedling Growth of Tomato (Solanum Lycopersicum L.) vol.65, pp.1, 2010, https://doi.org/10.2478/v10129-011-0049-3
- Effect of Penicillium Extractsa on Germination Vigor in Subsequent Seedling Growth of Tomato (Solanum Lycopersicum L.) vol.65, pp.1, 2010, https://doi.org/10.2478/v10129-011-0049-3
- Season and Tissue Type Affect Fungal Endophyte Communities of the Indian Medicinal Plant Tinospora cordifolia More Strongly than Geographic Location vol.64, pp.2, 2012, https://doi.org/10.1007/s00248-012-0029-7
- Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress vol.17, pp.9, 2010, https://doi.org/10.3390/molecules170910754
- Isolation and Characterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China vol.13, pp.12, 2010, https://doi.org/10.3390/ijms131216255
- Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity vol.29, pp.11, 2010, https://doi.org/10.1007/s11274-013-1378-1
- Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China vol.104, pp.6, 2010, https://doi.org/10.1007/s10482-013-0014-2
- Bioactive chemical constituents produced by endophytes and effects on rice plant growth vol.9, pp.1, 2014, https://doi.org/10.1080/17429145.2013.860562
- Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture vol.62, pp.2, 2010, https://doi.org/10.1007/s13199-014-0273-3
- Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses vol.128, pp.2, 2010, https://doi.org/10.1007/s10265-014-0688-1
- Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach vol.108, pp.4, 2015, https://doi.org/10.1007/s10482-015-0538-8
- Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids vol.141, pp.4, 2010, https://doi.org/10.1007/s10658-014-0581-8
- Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus vol.10, pp.1, 2010, https://doi.org/10.1080/17429145.2015.1079743
- Endophytic fungi: resource for gibberellins and crop abiotic stress resistance vol.35, pp.1, 2010, https://doi.org/10.3109/07388551.2013.800018
- Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5040918
- Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea vol.43, pp.4, 2015, https://doi.org/10.5941/myco.2015.43.4.373
- Effect of fungal endophytes on morphological characteristics, nutrients content and longevity of plane trees (Platanus orientalisL.) vol.39, pp.8, 2010, https://doi.org/10.1080/01904167.2015.1109113
- Gibberellins of Endophytic and Saprotrophic Penicillium funiculosum Strains vol.79, pp.5, 2017, https://doi.org/10.15407/microbiolj79.05.057
- Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth vol.13, pp.1, 2010, https://doi.org/10.1080/17429145.2018.1432773
- Fungal Diversity and Community Composition of Culturable Fungi in Stanhopea trigrina Cast Gibberellin Producers vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00612
- Efficiency of microbially assisted phytoremediation of heavy-metal contaminated soils vol.26, pp.3, 2010, https://doi.org/10.1139/er-2018-0023
- IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils vol.13, pp.11, 2010, https://doi.org/10.1371/journal.pone.0208150
- Isolation and Characterization of Endophytic Fungi from Purslane and the Effects of Isolates on the Growth of the Host vol.9, pp.5, 2010, https://doi.org/10.4236/aim.2019.95026
- Trichoderma reesei improved the nutrition status of wheat crop under salt stress vol.14, pp.1, 2010, https://doi.org/10.1080/17429145.2019.1684582
- Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root vol.135, pp.None, 2010, https://doi.org/10.1016/j.plaphy.2018.11.029
- Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo vol.76, pp.3, 2010, https://doi.org/10.1007/s00284-019-01632-9
- In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays vol.77, pp.3, 2019, https://doi.org/10.1007/s13199-018-0583-y
- Synthesis of Biologically Active Gibberellins GA4 and GA7 by Microorganisms vol.81, pp.2, 2019, https://doi.org/10.15407/microbiolj81.02.090
- Beneficial Effects of Endophytic Fungi from the Anoectochilus and Ludisia Species on the Growth and Secondary Metabolism of Anoectochilus roxburghii vol.5, pp.7, 2010, https://doi.org/10.1021/acsomega.9b03789
- Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications vol.10, pp.3, 2010, https://doi.org/10.1007/s13205-020-2081-1
- Yucasin and cinnamic acid inhibit IAA and flavonoids biosynthesis minimizing interaction between maize and endophyte Aspergillus nomius vol.81, pp.2, 2020, https://doi.org/10.1007/s13199-020-00690-z
- Linking Endophytic Fungi to Medicinal Plants Therapeutic Activity. A Case Study on Asteraceae vol.10, pp.7, 2010, https://doi.org/10.3390/agriculture10070286
- The Response of the Associations of Grass and Epichloë Endophytes to the Increased Content of Heavy Metals in the Soil vol.10, pp.3, 2010, https://doi.org/10.3390/plants10030429