DOI QR코드

DOI QR Code

Anaerobic Lipid Degradation Through Acidification and Methanization

  • Kim,, I-Jung (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Kim, Sang-Hyoun (Green Ocean Technology Center, Korea Institute of Industrial Technology) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Jin-Young (Center for Environmental Technology Research, Korea Institute of Science and Technology)
  • Published : 2010.01.31

Abstract

In biological wastewater treatment, high lipid concentrations can inhibit the activity of microorganisms critical to the treatment process and cause undesirable biomass flotation. To reduce the inhibitory effects of high lipid concentrations, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor in series, was applied to synthetic dairy wastewater treatment. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double-bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid, and volatile fatty acid (VFA) removal efficiencies were greater than 80%, 70%, and 95%, respectively, up to an organic loading rate of 6.5 g COD/l/day. No serious operational problems, such as significant scum formation or sludge washout, were observed. Protein degradation was found to occur prior to degradation during acidogenesis.

Keywords

References

  1. Akoh, C. C. and D. B. Min. 2002. Food Lipid: Chemistry, Nutrition, and Biotechnology, 3rd Ed. CRC Press, Ohio State University, Columbus, U.S.A.
  2. Angelidaki, I. and B. K. Ahring. 1995. Establishment and characterization of an anaerobic thermophilic (${55^{\circ}C}$) enrichment culture degrading long-chain fatty acids. Appl. Environ. Microbiol. 61: 2442-2445.
  3. APHA, AWWA, and WEF. 1998. Standard Methods for Examination of Waste and Wastewater, 20th Ed. American Public Health Association, Washington, D.C., USA.
  4. Becher, P., D. Koster, M. N. Popov, S. Markossian, G. Antranikian, and H. Markl. 1999. The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions. Water Res. 33: 653-660. https://doi.org/10.1016/S0043-1354(98)00253-X
  5. Demiral, B., O. Yenigun, and T. T. Onay. 2005. Anaerobic treatment of dairy wastewater: A review. Proc. Biochem. 40: 2583-2595. https://doi.org/10.1016/j.procbio.2004.12.015
  6. Gavala, H. N., H. Kopsinis, I. V. Skiadas, K. Stamatelatou, and G. Lyberatos. 1999. Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. J. Agr. Eng. Res. 73: 59-63. https://doi.org/10.1006/jaer.1998.0391
  7. Guerrero, L., F. Omol, R. Mendez, and J. M. Lema. 1999. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein. Water Res. 36: 3281-3290.
  8. Hanaki, K. and M. Nagase. 1981. Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol. Bioeng. 12: 1591-1610.
  9. Hilp, M. 2002. Determination of iodine values according to Hanus using 1,3-dibromo-5,5-dimethylhydantoin (DBH). J. Pharm. Biomed. Anal. 28: 81-88. https://doi.org/10.1016/S0731-7085(01)00632-X
  10. Hwu, C. S. 1997. Enhancing anaerobic treatment of wastewater containing oleic acid. Ph.D. Thesis. Wageningen Agricultural University, Wageningen, The Netherlands.
  11. Ince, B. K. and O. Ince. 2000. Changes to bacterial community make-up in a two-phase anaerobic digestion system. J. Chem. Tech. Biotech. 75: 500-508. https://doi.org/10.1002/1097-4660(200006)75:6<500::AID-JCTB246>3.0.CO;2-T
  12. Ince, O. 1998. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. 32: 2707-2713. https://doi.org/10.1016/S0043-1354(98)00036-0
  13. Kamizake, N. K. K., M. M. Goncalves, C. T. B. V. Zaia, and D. A. M. Zaia. 2003. Determination of total proteins in cow milk powder samples: A comparative study between the Kjeldahl method and spectrophotometric methods. J. Food Compost. Anal. 16: 507-516. https://doi.org/10.1016/S0889-1575(03)00004-8
  14. Kim, S. H., S. K. Han, and H. S. Shin. 2004. Two-phase anaerobic treatment system for fat-containing wastewater. J. Chem. Tech. Biotechnol. 79: 63-71. https://doi.org/10.1002/jctb.939
  15. Komatsu, T., K. Hanaki, and T. Matsuo. 1991. Prevention of lipid inhibition in anaerobic processes by introducing a twophase system. Wat. Sci. Tech. 23: 1189-1200.
  16. Liu, W. T., O. C. Chan, and H. H. P. Fang. 2002. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Wat. Res. 36: 3203-3210. https://doi.org/10.1016/S0043-1354(02)00022-2
  17. Matsui, T., A. Miura, T. Iiyama, N. Shinzato, H. Matsuda, and K. Furuhashi. 2005. Effect of fatty oil dispersion on oil-containing wastewater treatment. J. Haz. Mat. B118: 255-258.
  18. McInerney, M. J., M. P. Bryant, R. B. Hespell, and J. W. Costerton. 1981. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic syntrophic fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029-1039.
  19. Mendes, A. A., E. B. Pereira, and H. F. de Castro. 2006. Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem. Eng. J. 32: 185-190. https://doi.org/10.1016/j.bej.2006.09.021
  20. Mykhaylovin, O., J. M. Roy, N. Jing, and J. A. Lalman. 2005. Influence of $C_{18}$ long chain fatty acids on butyrate degradation by a mixed culture. J. Chem. Tech. Biotech. 80: 169-175. https://doi.org/10.1002/jctb.1172
  21. Pereira, M. A., D. Z. Sousa, M. Mota, and M. M. Alves. 2004. Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA. Biotechnol. Bioengin. 88: 502-511. https://doi.org/10.1002/bit.20278
  22. Perle, M., S. Kimchie, and G. Shelef. 1995. Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 29: 1549-1554. https://doi.org/10.1016/0043-1354(94)00248-6
  23. Ramasamy, E. V., S. Gajalakshme, R. Sanjeevi, M. N. Jithesh, and S. A. Abbasi. 2004. Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour. Technol. 93: 209-212. https://doi.org/10.1016/j.biortech.2003.11.001
  24. Rinzema, A., A. Alphenaar, and G. Lettinga. 1993. Anaerobic digestion of long-chain fatty acids in UASB and expanded granular sludge bed reactors. Proc. Biochem. 28: 527-537. https://doi.org/10.1016/0032-9592(93)85014-7
  25. Roy, F., E. Samain, H. C. Dubourguier, and G. Albagnac. 1986. Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch. Microbiol. 145: 142-147. https://doi.org/10.1007/BF00446771
  26. Salminen, E., J. Einola, and J. Rintala. 2001. Characterization and anaerobic batch degradation of materials accumulating in a digester treating poultry slaughterhouse waste. Environ. Technol. 22: 577-586. https://doi.org/10.1080/09593332208618261
  27. Shin, H. S., S. K. Han, Y. C. Song, and C. Y. Lee. 2000. Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste. Water Res. 35: 3441-3447.
  28. Svetlitshnyi, V., F. Rainey, and J. Wiegel. 1996. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short and long-chain fatty acids in syntrophic coculture with a methanegenic archaeum. Int. J. Syst. Bacteriol. 46: 1131-1137. https://doi.org/10.1099/00207713-46-4-1131
  29. Vidal, G., A. Carvalho, R. Mendez, and J. M. Lema. 2000. Influence of the content in fats and proteins in the anaerobic biodegradability of dairy wastewaters. Bioresour. Technol. 74: 231-239. https://doi.org/10.1016/S0960-8524(00)00015-8
  30. Yu, H. Q. and H. H. P. Fang. 2001. Acidification of mid- and high-strength dairy wastewater. Water Res. 35: 3697-3705. https://doi.org/10.1016/S0043-1354(01)00077-X
  31. Zhao, H., D. Yang, C. R. Woese, and M. P. Bryant. 1990. Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int. J. Syst. Bacteriol. 40: 40-44. https://doi.org/10.1099/00207713-40-1-40

Cited by

  1. A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil vol.28, pp.3, 2012, https://doi.org/10.1007/s11274-011-0880-6
  2. Conversion of waste cooking oil into biogas: perspectives and limits vol.104, pp.7, 2010, https://doi.org/10.1007/s00253-020-10431-3