DOI QR코드

DOI QR Code

Structure and Diversity of Arsenic-Resistant Bacteria in an Old Tin Mine Area of Thailand

  • Published : 2010.01.31

Abstract

The microbial community structure in Thailand soils contaminated with low and high levels of arsenic was determined by denaturing gradient gel electrophoresis. Band pattern analysis indicated that the bacterial community was not significantly different in the two soils. Phylogenetic analysis obtained by excising and sequencing six bands indicated that the soils were dominated by Arthrobacter koreensis and $\beta$-Proteobacteria. Two hundred and sixty-two bacterial isolates were obtained from arsenic-contaminated soils. The majority of the As-resistant isolates were Gramnegative bacteria. MIC studies indicated that all of the tested bacteria had greater resistance to arsenate than arsenite. Some strains were capable of growing in medium containing up to 1,500 mg/l arsenite and arsenate. Correlations analysis of resistance patterns of arsenite resistance indicated that the isolated bacteria could be categorized into 13 groups, with a maximum similarity value of 100%. All strains were also evaluated for resistance to eight antibiotics. The antibiotic resistance patterns divided the strains into 100 unique groups, indicating that the strains were very diverse. Isolates from each antibiotic resistance group were characterized in more detail by using the repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique with ERIC primers. The PCR products were analyzed by agarose gel electrophoresis. The genetic relatedness of 100 bacterial fingerprints, determined by using the Pearson product-moment similarity coefficient, showed that the isolates could be divided into four clusters, with similarity values ranging from 5-99%. Although many isolates were genetically diverse, others were clonal in nature. Additionally, the arsenic-resistant isolates were examined for the presence of arsenic resistance (ars) genes by using PCR, and 30% of the isolates were found to carry an arsenate reductase encoded by the arsC gene.

Keywords

References

  1. Abdrashitova, S. A., G. G. Abdullina, and A. N. Ilialetdinov. 1986. Role of arsenites in lipid peroxidation in Pseudomonas putida cells oxidizing arsenite. Mikrobiologiya 55: 212-216.
  2. Ahmann, D., A. L. Roberts, L. R. Krumholz, and F. M. M. Morel. 1994. Microbe grows by reducing arsenic. Nature 370: 750.
  3. Amacher, M. C. 1996. Nickel, cadmium and lead, pp. 739-768. In D. L. Spark, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Takatabai, C. T. Johnson, and M. E. Summer (eds.). Method of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America Inc., Wisconsin, WI.
  4. Anderson, C. R. and G. M. Cook. 2004. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr. Microbiol. 48: 341-347. https://doi.org/10.1007/s00284-003-4205-3
  5. Anderson, G. L., J. Williams, and R. Hille. 1992. The purification and characterisation of the arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J. Biol. Chem. 267: 23674-23682.
  6. Becker, J. M., T. Parkin, H. N. Cindy, D. W. Jayson, and A. Konopka. 2006. Bacterial activity, community structure and centimeter-scale spatial heterogeneity in contaminated soil. Microbiol. Ecol. 51: 220-231. https://doi.org/10.1007/s00248-005-0002-9
  7. Bennett, R. L. and M. H. Malamy. 1970. Arsenate resistant mutants of Escherichia coli and phosphate transport. Biochem. Biophys. Res. Commun. 40: 496-503. https://doi.org/10.1016/0006-291X(70)91036-3
  8. Butcher, B. G. and D. E. Rawlings. 2002. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148: 3983-3992.
  9. Butcher, B. G., S. M. Deane, and D. E. Rawlings. 2000. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66: 1826-1833. https://doi.org/10.1128/AEM.66.5.1826-1833.2000
  10. Cai, J., K. Salmon, and M. S. DuBow. 1998. A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144: 2705-2713. https://doi.org/10.1099/00221287-144-10-2705
  11. Cervantes, C., G. Ji, J. L. Ramirez, and S. Silver. 1994. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15: 355-367.
  12. Chang, J. S., Y. H. Kim, and K. W. Kim. 2008. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold-silver mines in the Republic of Korea. Appl. Microbiol. Biotechnol. 80: 155-165. https://doi.org/10.1007/s00253-008-1524-0
  13. Chen, C. M., T. K. Misra, S. Silver, and B. P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump: The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030-15038.
  14. Cindy, H. N., V. Torsvik, and L. Ovreas. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64: 1382-1388. https://doi.org/10.2136/sssaj2000.6441382x
  15. Cullen, W. R. and K. J. Reimer. 1898. Arsenic speciation in the environment. Chem. Rev. 89: 713-764.
  16. Da Costa, E. W. B. 1972. Variation in the toxicity of arsenic compounds to microorganisms and the suppression of the inhibitory effects of phosphate. Appl. Environ. Microbiol. 23: 46-53.
  17. Diorio, C., J. Cai, J. Marmor, R. Shinder, and M. S. DuBow. 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gramnegative bacteria. J. Bacteriol. 177: 2050-2056.
  18. Dombek, P. E., L. K. Johnson, S. T. Zimmerley, and M. J. Sadowsky. 2000. Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl. Environ. Microbiol. 66: 2572-2577. https://doi.org/10.1128/AEM.66.6.2572-2577.2000
  19. Ehrlich, H. L. 1996. Geomicrobial interactions with arsenic and antimony, pp. 276-293. In H. L. Ehrlich (ed.), Geomicrobiology, 3rd Ed. Marcel Dekker Inc., New York, NY.
  20. Ellis, P. J., T. Conrads, R. Hille, and P. Kuhn. 2001. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 ${\AA}$ and 2.03 ${\AA}$. Structure 9: 125-132. https://doi.org/10.1016/S0969-2126(01)00566-4
  21. Ford, T., J. Jay, A. Patel, M. Kile, P. Prommasith, T. Galloway, R. Sanger, K. Smith, and M. Depledge. 2005. Use of ecotoxicological tools to evaluate the health of New Bedford Harbor sediments: A microbial biomarker approach. Environ. Health Perspect. 113: 186-191.
  22. Fordyce, F., M. Williams, A. Paijitprapapon, and P. Charoenchaisri. 1995. Hydrogeochemistry of arsenic in an area of chronic mining-related arsenic, Ron Phibun District, Nakhon si Thammarat Province, Thailand: Preliminary results. BGS Technical Report WC/94/79R.
  23. Fournier, P. E., D. Vallenet, V. Barbe, S. Audic, H. Ogata, L. Poirel, et al. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLOS Genet. 2: e7. https://doi.org/10.1371/journal.pgen.0020007
  24. Gans, J., M. Wolinsky, and J. Dunbar. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 1387-1390. https://doi.org/10.1126/science.1112665
  25. Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis, pp. 399-404. In A. Klute (ed.). Method of Soil Analysis Part 1: Physical and Mineralogical Methods, 2nd Ed. American Society Agronomy Inc., Wisconsin, WI.
  26. Gelsomino, A., A. C. Keijzer-Wolters, G. Cacco, and J. D. Van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38: 1-15. https://doi.org/10.1016/S0167-7012(99)00054-8
  27. Gladysheva, T. B., K. L. Oden, and B. P. Rosen. 1994. Properties of the arsenate reductase of plasmid R773. Biochemistry 33: 7288-7293. https://doi.org/10.1021/bi00189a033
  28. Ji, G., E. A. Garber, L. G. Armes, C.-M. Chen, J. A. Fuchs, and S. Silver. 1994. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33: 7294-7299. https://doi.org/10.1021/bi00189a034
  29. Ji, G. and S. Silver. 1992. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. U.S.A. 89: 9474-9478. https://doi.org/10.1073/pnas.89.20.9474
  30. Johnson, L. K., M. B. Brown, E. A. Carruthers, J. A. Ferguson, P. E. Dombek, and M. J. Sadowsky. 2004. Sample size, library composition and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. Appl. Environ. Microbiol. 70: 4478-4485. https://doi.org/10.1128/AEM.70.8.4478-4485.2004
  31. Kaur, P. and B. P. Rosen. 1992. Plasmid-encoded resistance to arsenic and antimony. Plasmid 28: 29-40.
  32. Lopez-Maury, L., F. J. Florencio, and J. C. Reyes. 2003. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185: 5363-5371. https://doi.org/10.1128/JB.185.18.5363-5371.2003
  33. Loynachan, T. E. 2002. Laboratory Manual for Agronomy: Soil Microbial Ecology. Iowa State University, Iowa.
  34. Macur, R. E., C. R. Jackson, L. M. Botero, T. R. McDermott, and W. P. Inskeep. 2004. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 38: 104-111. https://doi.org/10.1021/es034455a
  35. Macy, J. M., K. Nunan, K. D. Hagen, D. R. Dixon, P. J. Harbour, M. Cahill, and L. I. Sly. 1996. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 1153-1157. https://doi.org/10.1099/00207713-46-4-1153
  36. Morases, S. R., R. B. Goncalves, C. Mouton, L. Seldin, M. C. S. Ferreira, and R. M. C. P. Domingues. 2000. Use of rep-PCR to define genetic relatedness among Bacteroides fragilis strains. J. Med. Microbiol. 49: 279-284.
  37. Muller, D., D. Lievremont, D. D. Simeonova, J. C. Hubert, and M. C. Lett. 2003. Arsenite oxidase aox genes from a metal-resistant ${\beta}$-Proteobacterium. J. Bacteriol. 185: 135-141. https://doi.org/10.1128/JB.185.1.135-141.2003
  38. Nakatsu, C. H. 2007. Soil microbial community analysis using denaturing gradient gel electrophoresis. Soil Sci. Soc. Am. J. 71: 562-571. https://doi.org/10.2136/sssaj2006.0080
  39. Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter, pp. 570-572. In A. L. Page (ed.). Method of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd Ed. American Society Agronomy Inc., Wisconsin. WI.
  40. Newman, D. K., E. K. Kennedy, J. D. Coates, D. Ahmann, D. Ellis, J. D. R. Lovley, and F. M. M. Morel. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168: 380-388. https://doi.org/10.1007/s002030050512
  41. Oden, K. L., T. B. Gladysheva, and B. P. Rosen. 1994. Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione. Mol. Microbiol. 12: 301-306. https://doi.org/10.1111/j.1365-2958.1994.tb01018.x
  42. Pontius, F., K. G. Brown, and C. J. Chen. 1994. Health implications of arsenic in drinking water. J. Am. Water Works Assoc. 86: 52-63.
  43. Quinn, J. P. and G. McMullan. 1995. Carbon-arsenic bond cleavage by a newly isolated Gram-negative bacterium, strain ASV2. Microbiology 141: 721-725. https://doi.org/10.1099/13500872-141-3-721
  44. Rosenstein, R., A. Peschel, B. Wieland, and F. Gotz. 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676-3683.
  45. Saltikov, C. W. and B. H. Olson. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68: 280-288. https://doi.org/10.1128/AEM.68.1.280-288.2002
  46. Santini, J. M., L. I. Sly, R. D. Schnagl, and J. M. Macy. 2000. A new chemolithotrophic arsenite-oxidising bacterium isolated from a goldmine: Phylogenetic, physiological and preliminary biochemical studies. Appl. Environ. Microbiol. 66: 92-97. https://doi.org/10.1128/AEM.66.1.92-97.2000
  47. Santini, J. M. and R. N. Vanden Hoven. 2004. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J. Bacteriol. 186: 1614-1619. https://doi.org/10.1128/JB.186.6.1614-1619.2004
  48. Sato, T. and Y. Kobayashi. 1998. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180: 1655-1661.
  49. Silver, S. and L. T. Phung. 1996. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50: 753-789. https://doi.org/10.1146/annurev.micro.50.1.753
  50. Silver, S. and L. T. Phung. 2005. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71: 599-608. https://doi.org/10.1128/AEM.71.2.599-608.2005
  51. Silver, S. and M. Walderhaug. 1992. Gene regulation of plasmid and chromosome determined inorganic ion transport in bacteria. Microbiol. Rev. 56: 1-33.
  52. Stewart, J. W. B. and J. R. Bettany. 1982. Mercury, pp. 367-384. In A. L. Page (ed.). Method of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd Ed. Soil Science Society of America Inc., Wisconsin, WI.
  53. Sun, Y., E. A. Polishchuk, U. Radoja, and W. R. Cullen. 2004. Identification and quantification of arsC genes in environmental samples by using realtime PCR. J. Microbiol. Methods 58: 335-349. https://doi.org/10.1016/j.mimet.2004.04.015
  54. Suzuki, K., N. Wakao, T. Kimura, K. Sakka, and K. Ohmiya. 1998. Expression and regulation of the arsenic resistance operon of Acidiphilium multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol. 64: 411-418.
  55. Tamaki, S. and W. T. Frankenberger. 1992. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol. 124: 79-110. https://doi.org/10.1007/978-1-4612-2864-6_4
  56. Tisa, L. S. and B. P. Rosen. 1990. Molecular characterization of an anion pump: The ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190-194.
  57. Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities: A review. J. Ind. Microbiol. 17: 170-178. https://doi.org/10.1007/BF01574690
  58. Williams, M. 1997. Mining-related arsenic hazards: Thailand case study. Technical Report WC/97/490. British Geological Survey.
  59. Williams, M., F. Fordyce, A. Paijitprapapon, and P. Charoenchaisri. 1996. Arsenic contamination in surface drainage and groundwater in part of the southeast Asian tin belt, Nakhon Si Thammarat, Southern Thailand. Environ. Geol. 27: 16-33. https://doi.org/10.1007/BF00770599
  60. Zwart, G. and J. Bok. 2002. Protocol DGGE. Available at .

Cited by

  1. Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a vol.13, pp.None, 2010, https://doi.org/10.1186/1471-2164-13-534
  2. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil vol.39, pp.1, 2010, https://doi.org/10.1007/s10295-011-0996-6
  3. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand vol.28, pp.5, 2010, https://doi.org/10.1007/s11274-012-1034-1
  4. Phylogenetic and phenotypic analyses of arsenic-reducing bacteria isolated from an old tin mine area in Thailand vol.28, pp.5, 2010, https://doi.org/10.1007/s11274-012-1034-1
  5. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water vol.8, pp.6, 2010, https://doi.org/10.2217/fmb.13.38
  6. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea vol.21, pp.15, 2010, https://doi.org/10.1007/s11356-014-2852-5
  7. Bioremediation of atrazine: recent advances and promises vol.14, pp.10, 2010, https://doi.org/10.1007/s11368-014-0921-5
  8. Autochthonous Microbiota in Arsenic-Bearing Technosols from Zemianske Kostoľany (Slovakia) and Its Potential for Bioleaching and Biovolatilization of Arsenic vol.227, pp.9, 2016, https://doi.org/10.1007/s11270-016-3038-1
  9. Biomineralization of atrazine and analysis of 16S rRNA and catabolic genes of atrazine degraders in a former pesticide mixing site and a machinery washing area vol.16, pp.9, 2010, https://doi.org/10.1007/s11368-016-1416-3