DOI QR코드

DOI QR Code

HpaXm from Xanthomonas citri subsp. malvacearum is a Novel Harpin with Two Heptads for Hypersensitive Response

  • Miao, Wei-Guo (Department of Plant Pathology, Nanjing Agricultural University) ;
  • Song, Cong-Feng (Department of Plant Pathology, Nanjing Agricultural University) ;
  • Wang, Yu (Department of Plant Pathology, Nanjing Agricultural University) ;
  • Wang, Jin-Sheng (Department of Plant Pathology, Nanjing Agricultural University)
  • Published : 2010.01.31

Abstract

A novel harpin-like protein, HpaXm, was described from cotton leaf blight bacteria, Xanthomonas citri subsp. malvacearum. The hpaXm was found to be localized between hrp2 and hrcC. A phylogenetic analysis of the complete amino acid sequence or solely the 13 highly conserved residues $H_2N$-SEKQLDQLLTQLI-COOH in the N-terminal $\alpha$-helix indicates that HpaXm is evolutionarily closer to HpaGXag and HpaXac than to Hpa1Xoo and Hpa1Xoc. A synthesized peptide containing two heptads, 39-LDQLLTQLIMALLQ-52, from the N-terminal a-helical region of HpaXm displayed comparable activity in inducing a hypersensitive response, but two other synthesized derivatives, $HpaXm{\Delta}T44C$ and $HpaXm{\Delta}M48Q$, showed reduced HR-triggering activity. The data from a GST trap test revealed that HpaXm was released into the extracellular medium, hpaXm mutant deficient for the leader peptide (1-MNSLNTQIGANSSFL-15) was unable to be secreted outside cells but still induced HR in tobacco leaves.

Keywords

References

  1. Adam, A. L., S. Pike, M. E. Hoyos, J. M. Stone, J. C. Walker, and A. Novacky. 1997. Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol. 115: 853-861.
  2. Alfano, J. R. and A. Collmer. 2004. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42: 385-414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
  3. Arlat, M., F. Van Gijsegem, J. C. Huet, J. C. Pernollet, and C. A. Boucher. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.
  4. Bogdanove, A. J., S. V. Beer, U. Bonas, C. A. Boucher, A. Collmer, D. L. Coplin, et al. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20: 681-683. https://doi.org/10.1046/j.1365-2958.1996.5731077.x
  5. Cornelis, G. R. and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735-774. https://doi.org/10.1146/annurev.micro.54.1.735
  6. Dilks, K., R. W. Rose, E. Hartmann, and M. Pohlschroder. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: A genomic survey. J Bacteriol. 185: 1478-1483. https://doi.org/10.1128/JB.185.4.1478-1483.2003
  7. Emanuelsson, O., S. Brunak, G. von Heijne, and H. Nielsen. 2007. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc. 2: 953-971. https://doi.org/10.1038/nprot.2007.131
  8. Galan, J. E. and H. Wolf-Watz. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567-573. https://doi.org/10.1038/nature05272
  9. Gophna, U., E. Z. Ron, and D. Graur. 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontaltransfer events. Gene 312: 151-163. https://doi.org/10.1016/S0378-1119(03)00612-7
  10. Guermeur, Y. 1997. Combinaison de classifieurs statistiques, Application a la prediction de structure secondaire des proteines, PhD thesis, Universite de Paris 06.
  11. Gurlebeck, D., F. Thieme, and U. Bonas. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163: 233-255. https://doi.org/10.1016/j.jplph.2005.11.011
  12. He, S. Y., H. C. Huang, and A. Collmer. 1993. Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. https://doi.org/10.1016/0092-8674(93)90354-S
  13. Kay, S., S. Hahn, E. Marois, G. Hause, and U. Bonas. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. https://doi.org/10.1126/science.1144956
  14. Kim, J. F. and S. V. Beer. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203-5210.
  15. Kim, J. G., B. K. Park, C. H. Yoo, E. Jeon, J. Oh, and I. Hwang. 2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J. Bacteriol. 185: 3155-3166. https://doi.org/10.1128/JB.185.10.3155-3166.2003
  16. Kim, J. G., E. Jeon, J. Oh, J. S. Moon, and I. Hwang. 2004. Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J. Bacteriol. 186: 6239-6247. https://doi.org/10.1128/JB.186.18.6239-6247.2004
  17. Krogh, A., B. Larsson, G. von Heijne, and E. L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305: 567-580. https://doi.org/10.1006/jmbi.2000.4315
  18. Lee, J., D. F. Klessig, and T. Nurnberger. 2001. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13: 1079-1093.
  19. Levy, R., M. Wiedmann, and G. Kreibich. 2001. In vitro binding of ribosomes to the beta subunit of the Sec61p protein translocation complex. J. Biol. Chem. 276: 2340-2346. https://doi.org/10.1074/jbc.M004867200
  20. Li, C. M., M. Haapalainen, J. Lee, T. Nurnberger, M. Romantschuk, and S. Taira. 2005. Harpin of Pseudomonas syringae pv. phaseolicola harbors a protein binding site. Mol. Plant Microbe Interact. 18: 60-66. https://doi.org/10.1094/MPMI-18-0060
  21. Li, P., X. Lu, M. Shao, J. Long, and J. Wang. 2004. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci. China C Life Sci. 47: 461-469. https://doi.org/10.1360/03yc0152
  22. Liu, Y. G. and N. Huang. 1998. Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR Pl. Plant Mol. Biol. Rep. 16: 175-181. https://doi.org/10.1023/A:1007420918645
  23. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  24. Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252: 1162-1164. https://doi.org/10.1126/science.252.5009.1162
  25. Natale, P., T. Bruser, and A. J. Driessen. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane - distinct translocases and mechanisms. Biochim. Biophys. Acta 1778: 1735-1756. https://doi.org/10.1016/j.bbamem.2007.07.015
  26. Noel, L., F. Thieme, D. Nennstiel, and U. Bonas. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184: 1340-1348. https://doi.org/10.1128/JB.184.5.1340-1348.2002
  27. Noel, L., F. Thieme, J. Gabler, D. Buttner, and U. Bonas. 2003. XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J. Bacteriol. 185: 7092-7102. https://doi.org/10.1128/JB.185.24.7092-7102.2003
  28. Oh, C. S. and S. V. Beer. 2007. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol. 145: 426-436. https://doi.org/10.1104/pp.107.103432
  29. Peng, J. L., Z. L. Bao, H. Y. Ren, J. S. Wang, and H. S. Dong. 2004. Expression of harpin(xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94: 1048-1055. https://doi.org/10.1094/PHYTO.2004.94.10.1048
  30. Schaad, N. W., E. Postnikova, G. Lacy, A. Sechler, I. Agarkova, P. E. Stromberg, V. K. Stromberg, and A. K. Vidaver. 2006. Emended classification of xanthomonad pathogens on citrus. Syst. Appl. Microbiol. 29: 690-695. https://doi.org/10.1016/j.syapm.2006.08.001
  31. Spyropoulos, I. C., T. D. Liakopoulos, P. G. Bagos, and S. J. Hamodrakas. 2004. TMRPres2D: High quality visual representation of transmembrane protein models. Bioinformatics 20: 3258-3260. https://doi.org/10.1093/bioinformatics/bth358
  32. Strobel, N. E., C. Ji, S. Gopalan, J. A. Kuc, and S. Y. He. 1996. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J. 9: 431-439. https://doi.org/10.1046/j.1365-313X.1996.09040431.x
  33. Tampakaki, A. P. and N. J. Panopoulos. 2000. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol. Plant Microbe Interact. 13: 1366-1374. https://doi.org/10.1094/MPMI.2000.13.12.1366
  34. Wang, X. Y., C. F. Song, W. G. Miao, Z. L. Ji, X. Wang, Y. Zhang, 2008. Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechnol. 81: 359-369. https://doi.org/10.1007/s00253-008-1651-7
  35. Wei, Z. M., R. J. Laby, C. H. Zumoff, D. W. Bauer, S. Y. He, A. Collmer, and S. V. Beer. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. https://doi.org/10.1126/science.1621099
  36. Wooldridge, K. 2009. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis. Caister Academic Press, Norfolk
  37. Ying, G., W. Wu, and C. Z. He. 2002. Cloning of Xanthomonas campestris pv. campestris pathogenicity-related gene sequences by TAIL-PCR. Sheng Wu Gong Cheng Xue Bao 18: 182-186.

Cited by

  1. The role of vacuolar processing enzyme ( VPE ) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure vol.61, pp.13, 2010, https://doi.org/10.1093/jxb/erq189
  2. Contribution of a harpin protein from Xanthomonas axonopodis pv. citri to pathogen virulence vol.13, pp.9, 2010, https://doi.org/10.1111/j.1364-3703.2012.00814.x
  3. Membrane-Targeted HrpNEa Can Modulate Apple Defense Gene Expression vol.27, pp.2, 2010, https://doi.org/10.1094/mpmi-10-13-0305-r
  4. Functional regions of HpaXm as elicitors with specific heat tolerance induce the hypersensitive response or plant growth promotion in nonhost plants vol.13, pp.1, 2010, https://doi.org/10.1371/journal.pone.0188788
  5. High temperatures affect the hypersensitive reaction, disease resistance and gene expression induced by a novel harpin HpaG-Xcm vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-018-37886-9
  6. WY195, a New Inducible Promoter From the Rubber Powdery Mildew Pathogen, Can Be Used as an Excellent Tool for Genetic Engineering vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.610252
  7. The determination of a novel inducible WY172 promoter derived from Oidium heveae HO-73 vol.143, pp.2, 2010, https://doi.org/10.1007/s11240-020-01923-1
  8. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis , acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth vol.20, pp.None, 2010, https://doi.org/10.1186/s12866-019-1691-4
  9. The stability of the coiled-coil structure near to N-terminus influence the heat resistance of harpin proteins from Xanthomonas vol.20, pp.1, 2010, https://doi.org/10.1186/s12866-020-02029-6