References
- Alexander, B., S. Leach, and W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. Gen. Microbiol. 133: 1171-1179. https://doi.org/10.1099/00221287-133-5-1171
- Blake, R., M. M. Lyles, and R. Simmons. 1995. Morphological and physical aspects of attachment of Thiobacillus ferrooxidans to pyrite and sulphur, pp. 13-22. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical Processing. University of Chile, Santiago de Chile.
- Calvin, N. M. and P. C. Hanawalt. 1988. High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol. 170: 2796-2801.
- Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15: 1311-1326. https://doi.org/10.1093/nar/15.3.1311
- Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280. https://doi.org/10.1016/0378-1119(87)90316-7
- Dopson, M. and E. B. Lindstrom. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40.
- Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acid Res. 16: 6127-6145. https://doi.org/10.1093/nar/16.13.6127
- Edwards, K. J., P. L. Bond, and J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals- Environ. Microbiol. 2: 324-332. https://doi.org/10.1046/j.1462-2920.2000.00111.x
- Fromm, M., L. Taylor, and V. Walbot. 1985. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. U.S.A. 82: 5824-5828. https://doi.org/10.1073/pnas.82.17.5824
- Gehrke, T., J. Telegdi, D. Thierry, and W. Sand. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64: 2743-2747.
- Gehrke, T., R. Hallmann, and W. Sand. 1995. Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching, pp. 1-11. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical processing. University of Chile, Santiago de Chile.
- Hallberg, K. B. and E. B. Lindstrom. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology. 140: 3451-3456. https://doi.org/10.1099/13500872-140-12-3451
- Hallberg, K. B. and E. B. Lindstrom. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining microorganisms. Appl. Environ. Microbiol. 62: 4243-4246.
- Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145: 409-414. https://doi.org/10.1111/j.1574-6968.1996.tb08608.x
- Hattermann, D. R., and G.. Stacey. 1990. Efficient DNA transformation of Bradyrhizobium japonicum by electroporation. Appl. Environ. Microbiol. 56: 833-836.
- Iwazaki, K., H. Uchiyama, O. Yagi, T. Kurabayashi, K. Ishizuka, and Y. Takamura. 1994. Transformation of Pseudomonas putida by electroporation. Biosci. Biotech. Biochem. 58: 851-854. https://doi.org/10.1271/bbb.58.851
- Jin, S. M., W. M. Yan, and Z. N. Wang. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58: 429-430.
- Kamimura, K., T. Okayama, K. Murakami, and T. Sugio. 1999. Isolation and characterization of a moderately thermophilic sulfur-oxidizing bacterium. Microbios 99: 7-18.
- Kusano, T., K. Sugawara, C. Inoue, T. Takeshima, M. Numata, and T. Shiratori. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J. Bacteriol. 174: 6617-6623.
- Liu, H. L., B. Y. Chen, Y. W. Lan, and Y. C. Cheng. 2003. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 62: 414-420. https://doi.org/10.1007/s00253-003-1280-0
- Liu, J. S., Y. Yan, H. T. Wang, and X. M. Wang. 2007. Progress in research on extracellular polymeric substance of Thiobacillus ferrooxidous. Metal Mine 378: 14-16.
- Liu, X. M., J. Q. Lin, Z. Zhang, J. Bian, Y. Liu, J. Q. Lin, and W. M. Yan. 2007. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04. J. Microbiol. Biotechnol. 17: 162-167.
- Pogliani, C. and E. Donati. 1999. The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. J. Ind. Microbiol. Biotechnol. 22: 88-92. https://doi.org/10.1038/sj.jim.2900610
- Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274. https://doi.org/10.1038/sj.jim.2900522
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Schaeffer, W. I., P. E. Holbert, and W. W. Umbreit. 1963. Attachment of Thiobacillus thiooxidans to sulfur crystals. J. Bacteriol. 85: 137-140.
- Simon, J. R. and K. McEntee. 1989. A rapid and efficient procedure for transformation of intact Saccharomyces cerevisiae by electroporation. Biochem. Biophys. Res. Commun. 164: 1157-1164. https://doi.org/10.1016/0006-291X(89)91790-7
- Simon, R., U. Priefer, and A. Puhier. 1983. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 784-791. https://doi.org/10.1038/nbt1183-784
- Swaving, J., W. van Leest, A. J. J. van Ooyen, and J. A. M. de Bont. 1996. Electrotransformation of Xanthobacter autotrophicus GJ10 and other Xanthobacter strains. J. Microbiol. Methods 25: 343-348. https://doi.org/10.1016/0167-7012(96)00007-3
- Touvinen, O. H., S. I. Niemela, and H. G. Gyllenberg. 1971. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 13: 517-527. https://doi.org/10.1002/bit.260130406
Cited by
- Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant vol.7, pp.9, 2010, https://doi.org/10.1371/journal.pone.0039470
- The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01755
- Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2010, https://doi.org/10.3390/min6040128
- Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications vol.45, pp.None, 2010, https://doi.org/10.1016/j.copbio.2017.03.009
- Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase ( cat ) gene as a selection marker for Acidithiobacillus caldus vol.12, pp.8, 2010, https://doi.org/10.1371/journal.pone.0183307
- In a Quest for Engineering Acidophiles for Biomining Applications: Challenges and Opportunities vol.9, pp.2, 2010, https://doi.org/10.3390/genes9020116
- Function analysis of 5′-UTR of the cellulosomal xyl - doc cluster in Clostridium papyrosolvens vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1040-0