DOI QR코드

DOI QR Code

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C. (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP) ;
  • Viero, Aline F. (Alberto Luiz Coimbra Institute - Graduate School and Research in Engineering (COPPE), Federal University of Rio de Janeiro) ;
  • Dias, Ana Carolina F. (Department of General Biology, Federal University of Vicosa - UFV) ;
  • Andreote, Fernando D. (Brazilian Agricultural Research - Embrapa) ;
  • Jesus, Ederson C. (Center for Microbial Ecology, Michigan State University) ;
  • De Paula, Sergio O. (Department of General Biology, Federal University of Vicosa - UFV) ;
  • Torres, Ana Paula R. (PETROBRAS R&D Center, Cidade Universitaria) ;
  • Santiago, Vania M.J. (PETROBRAS R&D Center, Cidade Universitaria) ;
  • Oliveira, Valeria M. (Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP)
  • Published : 2010.01.31

Abstract

The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

Keywords

References

  1. Ahn, S., S. Congeevaram, Y. K. Choung, and J. Park. 2008. Enhanced phenol removal by floating fungal populations in a high concentration phenol-fed membrane bioreactor. Desalination 221: 494-501. https://doi.org/10.1016/j.desal.2007.01.110
  2. Andreote, F. D., J. L. Azevedo, and W. L. Araujo. 2009. Assessing the diversity of bacterial communities associated with plants. Braz. J. Microbiol. (In Press).
  3. Arai, H., S. Akahira, T. Ohishi, M. Maeda, and T. Kudo. 1998. Adaptation of Comamonas testosteroni TA441 to utilize phenol: Organization and regulation of the genes involved in phenol degradation. Microbiology 144: 2895-2903. https://doi.org/10.1099/00221287-144-10-2895
  4. Atlas, R. M. and R. Bartha. 1998. Microbial Ecology: Fundamentals and Applications, pp. 329-477, 4th Ed. Beijaming/Cumming Science Publishing Company, Inc., Menlo Park, CA.
  5. Bae, H. S., J. M. Lee, Y. B. Kim, and S. T. Lee. 1996. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301. Biodegradation 7: 463-469.
  6. Barrios-Martinez, A., E. Barbot, B. Marrot, P. Moulin, and N. Roche. 2006. Degradation of synthetic phenol-containing wastewaters by MBR. J. Membrane Sci. 281: 288-296. https://doi.org/10.1016/j.memsci.2006.03.048
  7. Basile, L. A. and L. Erijman. 2008. Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis. Appl. Microbiol. Biotechnol. 78: 863-872. https://doi.org/10.1007/s00253-008-1351-3
  8. Contreras, E. M., M. E. Albertario, N. C Bertola, and N. E. Zaritzky. 2008. Modelling phenol biodegradation by sludges evaluated through respirometric techniques. J. Hazard. Mater. 150: 366-374.
  9. Dibenedetto, A., R. M. Lo Noce, M. Narracci, and M. Aresta. 2006. Structure-biodegradation correlation of polyphenols for Thauera aromatica in anaerobic conditions. Chem. Ecol. 22: 133-143. https://doi.org/10.1080/02757540600557975
  10. Duineveld, B. M., G. A. Kowalchuk, A. Keijzer, J. D. van Elsas, and J. A. van Veen. 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol. 67: 172-178. https://doi.org/10.1128/AEM.67.1.172-178.2001
  11. Ewing, B., L. Hillier, M. Wendl, and P. Green. 1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.
  12. Godon, J. J., E. Zumstein, P. Dabert, F. Habouzit, and R. Moletta. 1997. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63: 2802-2813.
  13. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. M. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
  14. Heylen, K., B. Vanparys, L. Wittebolle, N. Verstraete, N. Boon, and P. de Vos. 2006. Cultivation of denitrifying bacterium: Optimization of isolation conditions and diversity study. Appl. Environ. Microbiol. 72: 2637-2643. https://doi.org/10.1128/AEM.72.4.2637-2643.2006
  15. Ibekwe, A. M. and S. R. Lyon. 2007. Microbial characteristics through drinking water aquifer sand material. Eng. Life Sci. 1: 81-89.
  16. Jiang, H. J., J. H. Tay, A. M. Maszenan, and S. T. L. Tay. 2004. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl. Environ. Microbiol. 70: 6767-6775. https://doi.org/10.1128/AEM.70.11.6767-6775.2004
  17. Khan, S. T. and A. Hiraishi. 2002. Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate) degrading denitrifying bacterium isolated from sludge. J. Gen. Appl. Microbiol. 48: 299-308. https://doi.org/10.2323/jgam.48.299
  18. Khardenavis, A. A., A. Kapley, and H. J. Purohit. 2007. Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl. Microbiol. Biotechnol. 77: 403-409. https://doi.org/10.1007/s00253-007-1176-5
  19. Kimura, M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  20. Lane, D. L., B. Pace, G. J. Olsen, D. A. Stahl, M. L. Sogin, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Prog. Nat. Sci. 82: 6955-6959. https://doi.org/10.1073/pnas.82.20.6955
  21. Lin, C.-W., C.-Y. Lai, L.-H. Chen, and W.-F. Chiang. 2007. Microbial community structure during oxygen-stimulated bioremediation in phenol-contaminated groundwater. J. Hazard. Mater. 140: 221-229. https://doi.org/10.1016/j.jhazmat.2006.06.083
  22. Loffler, F. E. and E. A. Edwards. 2006. Harnessing microbial activities for environmental cleanup. Curr. Opin. Microbiol. 17: 274-284.
  23. Manefield, M., A. S. Whiteley, G. I. Griffiths, and M. J. Bailey. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68: 5367-5373. https://doi.org/10.1128/AEM.68.11.5367-5373.2002
  24. Mao, Y., X. Zhang, X. Yan, B. Liu, and L. Zhao. 2008. Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. J. Microbiol. Meth. 75: 231-236. https://doi.org/10.1016/j.mimet.2008.06.005
  25. Park, J. Y. and B. Sang. 2007. Change of sludge consortium in response to sequential adaptation to benzene, toluene, and oxylene. J. Microbiol. Biotechnol. 17: 1772-1781.
  26. Pearson, K. 1926. On the coefficient of racial likeliness. Biometrika. 18: 105-117.
  27. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  28. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.
  29. Shinoda, Y., Y. Sakai, H. Uenishi, Y. Uchihashi, A. Hiraishi, H. Yukawa, H. Yurimoto, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microbiol. 70: 1385-1392. https://doi.org/10.1128/AEM.70.3.1385-1392.2004
  30. Song, B., N. J. Palleroni, and M. M. Haggblom. 2000. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl. Environ. Microbiol. 66: 3446-3453. https://doi.org/10.1128/AEM.66.8.3446-3453.2000
  31. Standard Methods for the Examination of Water and Wastewater. 1998. American Public Health Association, American Water Works association and Water Pollution Control Federation, 20th edition, Washington, DC.
  32. Streit, W. R. and R. A. Schmitz. 2004. Metagenomics - The key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498. https://doi.org/10.1016/j.mib.2004.08.002
  33. Sueoka, K., H. Satoh, M. Onuki, and T. Mino. 2009. Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol. Lett. 291: 169-174. https://doi.org/10.1111/j.1574-6968.2008.01448.x
  34. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA 4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  35. ter Braak, C. J. F. and P. Smilauer. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5).
  36. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
  37. Valle, A., M. J. Bailey, A. S. Whiteley, and M. Manefield. 2004. N-Acyl-$_L$-homoserine lactones (AHLs) affect microbial community composition and function in sludge. Environ. Microbiol. 6: 424-433. https://doi.org/10.1111/j.1462-2920.2004.00581.x
  38. Viero, A. F., T. M. Melo, A. P. R. Torres, N. R. Ferreira, G. L. Sant'Anna Jr., C. P. Borges, and V. M. J. Santiago. 2008. The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. J. Membrane Sci. 319: 223-230. https://doi.org/10.1016/j.memsci.2008.03.038
  39. Wei, G., J. Yu, Y. Zhu, W. Chen, and L. Wang. 2008. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. J. Hazard. Mater. 151: 111-117. https://doi.org/10.1016/j.jhazmat.2007.05.058
  40. White, D. 2000. The Physiology and Biochemistry of Prokaryotes, 2nd Ed. Oxford University Press., Oxford, NY.
  41. Yan, J., W. Jianping, B. Jing, W. Daoquan, and H. Zongding. 2006. Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem. Eng. J. 29: 227-234. https://doi.org/10.1016/j.bej.2005.12.002
  42. Zhao, W.-T., X. Huang, D.-J. Lee, X.-H. Wang, and Y.-X. Shen. 2009. Use of submerged anaerobic-anoxic-oxic membrane bioreactor to treat highly toxic coke wastewater with complete sludge retention. J. Membrane Sci. 330: 57-64. https://doi.org/10.1016/j.memsci.2008.12.072

Cited by

  1. Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs vol.41, pp.7, 2010, https://doi.org/10.1016/j.orggeochem.2010.03.014
  2. Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor vol.90, pp.2, 2011, https://doi.org/10.1007/s00253-010-3061-x
  3. Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review vol.42, pp.7, 2010, https://doi.org/10.1080/10643389.2010.526494
  4. Analysis of Bacterial Communities in A2O Membrane Bioreactor Treating Oily Wastewater vol.641, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.641-642.87
  5. Investigation of the FeFe-hydrogenase gene diversity combined with phylogenetic microbial community analysis of an anaerobic domestic sewage sludge vol.29, pp.11, 2010, https://doi.org/10.1007/s11274-013-1363-8
  6. Meta-omics approaches to understand and improve wastewater treatment systems vol.14, pp.3, 2010, https://doi.org/10.1007/s11157-015-9370-x
  7. Recent developments in forward osmosis membrane bioreactors: a comprehensive review vol.57, pp.59, 2010, https://doi.org/10.1080/19443994.2016.1193448
  8. Membrane fouling behavior and microbial community succession in a submerged membrane bioreactor treating harbor oily wastewater vol.17, pp.9, 2010, https://doi.org/10.1631/jzus.a1500289
  9. Performance and Bacterial Communities in Conventional Activated Sludge and Membrane Bioreactor Systems with Low C/N Ratio Wastewater for Nitrogen Removal vol.36, pp.9, 2019, https://doi.org/10.1089/ees.2019.0007
  10. Revealing the bacterial community profiles during the degradation of acetone, propionic and hexanoic acids-components of wastewater from the Fischer-Tropsch process vol.23, pp.2, 2020, https://doi.org/10.1007/s10123-019-00106-z
  11. Comparison of methods for preservation of activated sludge samples for high-throughput nucleic acid sequencing and bacterial diversity analysis vol.157, pp.None, 2021, https://doi.org/10.1016/j.ibiod.2020.105139
  12. Characterization of the biofilm structure and microbial diversity of sulfate-reducing bacteria from petroleum produced water supplemented by different carbon sources vol.304, pp.None, 2010, https://doi.org/10.1016/j.jenvman.2021.114189