LOCAL SPECTRAL PROPERTIES OF SEMI-SHIFTS

  • Yoo, Jong-Kwang (Department of Liberal Arts and Science, Chodang University) ;
  • Kim, Yong-Il (Department of Internet Software, Honam University)
  • Published : 2010.01.30

Abstract

In this note, we study the local spectral properties of semi-shifts. If $T\;{\in}\;L(X)$ is a semi-shift on a complex Banach space X, then T is admissible. We also prove that if $T\;{\in}\;L(X)$ is subadmissible, then $X_T(F)\;=\;E_T(F)$ for all closed $F\;{\subseteq}\;\mathbb{C}$. In particular, every subscalar operator on a Banach space is admissible.

Keywords

References

  1. I. Colojoarva and C. Foias, Theory of generalized spectral operators, Gorden and Breach, New York, 1968.
  2. J. Eschmeier and M. Putinar, Bishop's property $(\beta)$ and rich extension of linear operators, Indiana Univ, Math. J. 37, No.2 (1988), 325-348. https://doi.org/10.1512/iumj.1988.37.37016
  3. B.E. Johnshon, Continuity of linear opemtors commuting with linear operators, Trans. Amer. Math. Soc. 128 (1967), 88-102. https://doi.org/10.1090/S0002-9947-1967-0213894-5
  4. B.E. Johnshon and A.M. Sinclair, Continuity of linear operators commuting with linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540. https://doi.org/10.1090/S0002-9947-1969-0251564-X
  5. K.B. Laursen, Algebraic spectral subspaces and automatic continuity, Czechoslovak Math. J. 38(113) (1988), 157-172.
  6. K. B. Laursen,Operators with finite ascent, Pacific J. Math. 152 (1992), 323-336. https://doi.org/10.2140/pjm.1992.152.323
  7. K.B. Laursen and M.M. Neumann, Decomposable operators and automatic continuity, J. Operator Theory 15 (1986) , 33-51.
  8. K.B. Laursen and M. M. Neumann, Asymptotic intertwining and spectral inclusions on Banach spaces, Czech. Math. J. 43(118) (1993), 483-497.
  9. K.B. Laursen and M.M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343. https://doi.org/10.1017/S0017089500030937
  10. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectml Theory, London Mathematical Society Monographs New Series 20, Oxford Science Publications, Oxford, 2000.
  11. K.B. Laursen and P., Vrbova, 80me remarks on the surjectivity spectrum of linear operators, Czechoslovak Math J. 39 (1989), 730-739.
  12. M. Martin and M. Putinar, Lectures on Hyponormal Operators, Birkhauser Verlag, Basel Boston Berlin, 1989.
  13. T. L. Miller and V. G. Miller, An operator satisfying Dunford's condition $\left(C \right)$ but without Bishop's property $\left(\beta \right)$, Glasgow Math. J. 40 (1998), 427-430. https://doi.org/10.1017/S0017089500032754
  14. M. Putinar, Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385-395.
  15. P. Vrbova, Structure of maximal spectral spaces of generalized scalar operators, Czech. Math. J. 23(98) (1973), 493-496.