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LOCAL SPECTRAL PROPERTIES OF SEMI-SHIFTS

JONG-KWANG Y00* AND YONG IL KM

ABSTRACT. In this note, we study the local spectral properties of semi-shifts. If
T € L(X) is a semi-shift on a complex Banach space X, then T is admissible. We
also prove that if T € L(X) is subadmissible, then X7 (F) = Er(F) for all closed
F C C. In particular, every subscalar operator on a Banach space is admissible.
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1. Introduction

We first recall some basic notions and results from local spectra theory. Let
X be a complex Banach space and L{X) denotes the Banach algebra of all
bounded linear operators of X itself, equipped with the usual operator norm.
For T € L(X), TX and KerT will denote the range and kernel, respectively.
Given an operator T € L(X), 0,(T), o(T) and p(T') denotes the point spectrum,
the spectrum and resolvent set of T and let Lat(T') stand for the collection of all
T—invariant closed linear subspaces of X, and for Y € Lat(T'), T|Y denotes the
restriction of T on Y. For T € L(X), we denote by Rr : A € p(T) — Rp(A) :=
(T — AI)~! € L(X) its resolvent map. It is well known that if A € p(T’) then

1
AN > ——

IR 2 sy

where dist(A, o(T)) denotes the distance of the complex number XA from o(T').

This implies that the resolvent map is never bounded. For an operator T' € L(X)

and arbitrary € X, we define f : p(T) — X by f(A\) := Rr(A)z. Then f may

have analytic extensions, solutions of the equation (T'— A) f(A) = z. If for every
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x € X any two extensions of Rp(\)z agree on their common domain, T € L(X)
is said to have the single-valued extension property(SVEP). In this case, let pr(x)
be the maximal domain of such extensions. The set or(z) := C\ pr(z) is called
the local spectrum of T at x. Evidently, or(z) is closed with or(z) C o(T).
The resolvent set p(T) is always a subset of pr(z), so the analytic solutions
occurring in the definition of the local resolvent set may be thought of as local
extensions of the function (T — A)~!z. It is obvious that T has the SVEP if and
only if the zero function is the only analytic function that satisfies (T'— A) f(\) =
0. By the Liouville theorem, it is clear that T has the SVEP if and only if for
any non-zero z € X, we have or(z) # ¢, see [1], [8] and [10] for more details.
In this note, we proved that if T € L(X) is a semi-shift on a complex Banach
space X, then T is admissible and X1 (F) = Ep(F) for all closed F C C and

o0
Ep(C\{0}) = ﬂ T"X. We also prove that if T € L(X) is a semi-shift on a re-
n=1
flexive Banach space X and #()\) is bounded, then z € ﬂ (T—X)Ep(or(x)).
A€dor(x)
Finally, we proved that if T € L(X) is subadmissible, then Xr(F) = Er(F) for
all closed F' C C. In particular, every subscalar operator on a Banach space is
admissible.

We shall also need some closely related notions. An operator T € L(X) is
said to have Bishop’s property (3) if for every open subset U of C and for every
sequence of analytic functions f,, : U — X for which (T — A)fn{)\) converges
uniformly to zero on each compact subset of U, it follows that f,(A) — 0 as
n — 00, locally uniformly on U.

For every closed subset F of C, let X7 (F) = {x €X :op(z) C F} denote

the corresponding analytic spectral subspace of T, that is, z € Xr(F) if and
only if every A € C\ F has an open neighborhood V and an analytic function
f:V — X such that (T — p)f(u) =z forall p e V.

It is easy to see that X7 (F') is a T—invariant linear subspace of X and also
hyperinvariant for T, but need not be closed.

An operator T' € L(X) is said to have Dunford’s property (C) if Xp(F) is
closed for every closed F' C C. It is well known that the following implication
hold:

T has property (3) = T has property (C) = T has SVEP. (1)

Note that neither of the implications (1) may be reversed in general, see [1], [13].

Associated with the operator T' and each closed subset F of C is also an
algebraic spectral subspace E1(F), defined to be the linear span of the collection
of all (not necessarily closed) linear subspaces Y of X for which

(T-ANY =Y foreach Ae€C\F,

Evidently, E7(F) is the largest linear subspace Y for which (T'— \)Y =Y for
all A € C\ F. These spaces, with an equivalent definition, were introduced in
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[4] in connection with certain problems in automatic continuity. It follows from
Proposition 1.2.16 in [10] that X7 (F) C Ep(F) for every T € L(X) and closed
set F' C C.

Thus if T has no non-trivial divisible subspace in the sense that Er(¢) = {0},
then clearly T has SVEP. By the open mapping theorem, we observe, for a
closed set F' C C that if E7(F) is closed, we have Ex(F) = X7(F), see [11]. Tt
is clear that z € Ex(F) if for every A € C\ F, there exists (z,) in X such that
(T—MNzpi=zpandz=gzp foralln=0,1,2,---.

An operator T' € L(X) on a Banach space X is said to be admissible if, for
each closed F' C C, the algebraic spectral subspace E7(F) is closed.

Examples 1. 1) Recall from [7] that an operator T € L(X) is said to be a
generalized scalar operator if there exists a continuous algebra homomorphism
®: C™(C) — L(X) satistying ®(1) = I and ®(z) = T where I is the identity
operator on X and z denotes the identity function on C. In [15], it is shown that
if T' € L(X) is a generalized scalar operator then Er(F) is closed, for any closed
F C C. Hence all generalized operators and, in particular, all normal operators
on a Hilbert spaces are admissible.

2) Recall from [7] that an operator T € L(X) is said to be super-decomposable
operator if for every open covering {U,V} of the complex plane C there is

an operator R € L{X) commuting with T such that o(TIR(X )) C U and

U(TI(I — R)(X )) C V. It follows from [10] that if T is super-decomposable

and E7(¢) = {0}, then the algebraic spectral subspace Er(F) is closed for any
closed F' C C. Thus super-decomposable operators with no non-trivial divisible
subspaces are admissible.

3) Recall from [6] that an operator T € L(X) on a Banach space X is said to
be a totally paranormal operator(TPN) if ||[(T — A)z||? < |(T — X)?z]| for every
A € C and every € X. In particular, every hyponormal operator is totally
paranormal operator. It follows from [6] that if T € L(H) on a Hilbert space H
is TPN and 0,(T) = ¢, then the algebraic spectral subspace Ep(F) is closed,
for any closed ' C C. Thus TPN operators without eigenvalues are admissible.

2. Local spectral properties of semi-shifts

We say that an operator T' € L(X) is semi-shift if T is an isometry for which
() T"X = {0}.
n=1

Evidently, a semi-shift on a non-trivial Banach space is a non-invertible isometry.

Natural examples include, for arbitrary 1 < p < oo, the unilateral right shifts
of arbitrary multiplicity ¢/ (N), and the right translation operators on L?([0, c0)).
Moreover, it follows easily from the von Neumann-Wold decomposition that, on
Hilbert spaces, the semi-shifts are precisely the pure isometries.
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In [15], Vrbova proved that if T € L(X) is a generalized scalar operator on a
complex Banach space X, then

Xr(F)= (] (T-MFX
AEC\F

for all sufficiently large integers p and closed sets F' C C. From this equality, we
have
Er(F)C [ (@T-M"XC () (T-NFX=Xr(F)
AEC\F,neN AEC\F

for all closed F' C C, since Ep(F) = (T—A)"Er(F) C(T—A)"X forall A € C\F
and for all n € N. Hence

Xr(F)=Er(F)= () (T - XPX, forallclosed F CC.
AeC\F

Since every generalized scalar operator has SVEP, Vrbova’s result shows that

()(T - NP X = Ex(¢) = Xr(¢) = {0},

AeC

i.e., every generalized scalar operator has no divisible subspace different from
zero and there exists an integer p € N such that the intersection of the ranges
(T — M\)PX over all A € C is trivial.

An operator T' € L(X) on a complex Banach space X is said to be subscalar
provided that T is similar to the restriction of a generalized scalar operator to
a closed invariant subspace.

Theorem 1. IfT € L(X) is a semi-shift on a complex Banach space X, then T
is admissible. Furthermore, X1 (F) = Er(F) for all closed F C C and Er(C\

{oh) = 1x.
n=1
Proof. Let F C C be a given closed set. If E7(F) = {0}, then E7(F) is closed.

Suppose that Er(F) # {0} and suppose that there is A\ € C \ F with [A| < 1.
Since (T — A)Ep(F) = E7(F) and T — ) is bounded below, it follows that

(T ~ NEr(F) = Br(P).

This implies that the restriction of T'— X to Er(F) is invertible.
However, if an isometry on any Banach space is non-invertible, then o(T) is

the entire unit disc. Thus T'|Er(F) is invertible, and hence o(T|Er(F)) C T,

where T denotes the unit circle. From this it follows that Er(F) C Ep(F) C

E7(T). However, if Er(F) C Er(T) then we may assume that isometry T is
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invertible. Let S := T|Ep(F). Then S is invertible and so Eg(F') is closed in
Er(F). Hence E¢(F) = Eg(F) is closed. But if an isometry T is invertible, then
by Corollary 4.6 [7] T is generalized scalar, and hence Er(F) is closed. This
part of the argument was done under the assumption that there is A € C\ F
with {A] < 1. If this is not the case, then {\ € C : |A\| < 1} C F and hence

Er(F) = X is closed. Finally, we will show that

Br(€\ (0) = () T'X.
n=1

o

Let Z := ﬂ T"X. It is clear that Ep(C\ {0}) C Z. It remains to show that

n=1
Z C Ep(C\{0}). It suffices to show that TZ = Z. Clearly, TZ C Z. lf z € Z
and ¢ = T"z,, n = 1,2,3,- -+, then T(z; — Txz) = 0 and T(Tx2 — T?x3) = 0.
Since T is injective, 1 = Txo = T?z5. By iterating this procedure, we have

$1=T$2=T2x3=T3l‘4="',

and so z1 € Z and hence x = Tz € Z. This means that TZ = Z. By definition
of Er(C\ {0}), we have Z C Er(C\ {0}).

It is well known that if T is an isometry on a Banach space X then, by
2

Theorem 1, E7(C\{0}) = ﬂ T"X. Let Y := Ep(C\{0}). Since T is an isometry,
n=1

T™X is closed for all n € N. Thus Y is closed and T|Y is invertible. This means

that TY is an invertible isometry and consequently T|Y is generalized scalar.

It follows that Er(¢) = Ery(¢) = {0} so that an isometry has no non-trivial

divisible subspace.

Denote in the sequel for A C C the closure by A4 and by A° the interior.

Proposition 2. Suppose that T € L(X) is a semi-shift on a reflexive Banach
space X. If Z(X) is bounded, then x € ﬂ (T — N Er(or(z)).
A€dor(z)

Proof. Clearly, Xr(or(z)) = Er(or(z)) for all z € X, by Theorem 1. Suppose
that £(A) is bounded. Let A € dor(z). Then there exists A, € pr(z) such that
An — A as n — 0. Since X is a reflexive Banach space, we can choose A, so
that #(\,) is convergent sequence, let y be its limit. Thus we have (T — )y = «.
It follows from Proposition 1.2.16 [10] that or(xz) = or(y). This means that
y € Xr{or(z)) = Er(or(z)) and hence z = (T — Ny € (T — X)Er(or(z)).

It is clear from Proposition 2 that if z ¢ ﬂ (T — M)Er(or(x)), then the
A€dor(x)
local resolvent function #(A) is unbounded. It is clear that the local resolvent
function Z(A) is analytic on pr(z).
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Lemma 3. Suppose that T € L(X) is a semi-shift on a reflexive Banach space
X and all derivatives of Z(X\) are bounded. If Ao € dor(z), then there exists a
sequence (xrn) in X such that x = zg, (T—Xo)Zn+1 = Tn, and o7 (Tn+1) = o7(T4)
foralln=0,1,2,---.

Proof. Clearly, X7(¢) = Er(¢) is closed, by Proposition 1.1 [9] and hence T
has SVEP. Suppose that all derivatives of Z(\) are bounded. Since {Z'(\)} is
bounded, there exists a positive constant m > 0 such that

1Z(A) = &)l < m|A = pl
for all \,u € pr(x). If Ay € Oor(z), then there exists {\,} C pr(z) that
is converging to Ag. Since {A,} is a Cauchy sequence, Z(),) is also a Cauchy
sequence in X. Let 21 := hm a:()\ ). Then we have (T — X\o)z; = = and or(z) =
or(z1). Since (T — AO)(T )\)wl( ) = (T — A)Z()), and by the SVEP of T, we
have
(T = Ao)Z1(A) = Z(N).
Thus we obtain
E1()) = ——x(;)_ /\fl = lim 2N =80

Using the preceding inequality, we have ||Z1()\)|| < m. Since X is a reflex-
ive Banach space, we can choose A, so that Z(\,) is convergent sequence, let
nllm Z(An) := 2. As before, we have (T — \o)z2 = 71 and or(x2) = or(z1). By

our assumption, there exist Cv > 0 and Cy > 0 such that
1Z(A) = &(n) — (A = W)l < C1lx — pf?,
12'(A) = 2’ (Wl < CalA — gl
for all A, 4 € pr(z). We derive that Z'()\,) is also a Cauchy sequence, denote z
its limit. By the preceding inequality, we have
[£1(A) — 2] < C1|A = Aol.
Thus 2z = x5 and ||Z2(M)|| < Cs. Hence we construct by induction a sequence

(zn) in X such that = zo, (T — Ao)Tp41 = Tp, and o7 (Tpy1) = o7(zy) for all
n=0,1,2---. O

n—oo - A’I’L

Theorem 4. Suppose that T € L(X) is a semi-shift on a reflexive Banach space
X. If all the derivatives of £(X) are bounded, then or(z) = or(z)°.

Proof. It is clear that o7(z)° C or(z), since o7(z) is closed. It follows from

Theorem 1 that T is admissible. Thus we have Er(or(z)°) = Xr(or(x)°). Let
Ao € o7 (z). Then, by Lemma 3 there exists a sequence (z,,) in X such that

x =0, (T — Xo)Tnt1 =, and or(zni1) = or(zn)
foralln=0,1,2,---. Thus z € Er(or(z)°) C Er(or(z)°) = XT(O'T( )°). This
means that X7(or(z)) C Xr(or(z)°) and hence or(z) C or(z)°.
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Lemma 5 ([11]). Let T € L(X) be a bounded linear operator on a Banach space
X. Suppose that F C C is closed and Er(F) is closed. Then Xr(F)= Er(F).

Recall that a linear subspace Y of X is said to be T—divisible subspace if
(T-ANY =Y forall AeC.

Evidently, E7(¢) is the largest T—divisible linear subspace.

Lemma 6. Every admissible operator cannot have non-trivial divisible sub-
spaces. In particular, if T € L(X) is admissible then T has SVEP.

Proof. I T € L(X) is admissible, then by Lemma 5 Er(F) = Xr(F) is closed
for every closed F' C C. In particular, Er(¢) = Xr(¢) is closed. It follows from
Proposition 1.1 [8] that T has SVEP and Er(¢) = X7(¢) = {0} is closed. If
Z is a T—divisible subspace of T, then (T —AN)Z = Z for all A € C. By the
maximality of Er(¢), Z C Er(¢) = {0}, and hence Z = {0}.

An operator T € L(X) is called semi-admissible if there is an admissible
operator S € L(X) on some Banach space Y and an injective continuous linear
map A € L(X,Y) for which SA = AT. If the injection A has closed range then
we shall call T' subadmissible. This means that an operator T is subadmissible
if, up to similarity, it is the restriction to an invariant subspace of an admissible
operator.

Theorem 7. If T € L(X) on a complex Banach space X is subadmissible then
X7 (F) = Er(F) for all closed F C C.

Proof. Assume that S € L(Y') is an admissible extension of T. Then, by Lemma
6 S has SVEP. Let A: X — Y be a continuous linear injection with closed range
for which AT = SA. Let F C C be closed. It follows from Proposition 1.2.17 [10]
that AX7(F) C Ys(F). Since (S — A\ AEr(F) = A(T — \)Ep(F) = AEp(F) for
all A € C\ F, we have AEr(F) C Es(F), by maximality of Eg(F). If z € E(F)
then Az € Y5(F), so there is an analytic function f: C\ F — Ys(F) for which
(8 = A)f(X) = Az for all A € C\ F. On the other hand, by definition of Er(F),
for every A € C\ F thereis z) € Er(F) such that (T — M)z, = x. Thus we have
Azy € Ys(F). Since (S — \)(Azy — f(A)) = 0, it follows from Proposition 1.2.16
[10] that Azy — f(X) € Ker(S — ) C Y5({A}). Hence

(
Al‘)\ — f()\) S Ys(F) n YS({)\}) = Ys(F n {)\}) = Y5(¢) = {0},
(

by the SVEP of S. Hence f(\) = Az for all A € C \ F. By the open mapping
theorem, the inverse A7! : AX — X is continuous, and hence the mapping
given by z(}) := zy = A~!f(A) is analytic on C \ F and consequently that
r= (T - Nz()) = Ys(F).
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Corollary 8. Every subadmissible operator with Dunford’s property (C) is ad-
missible.

Proof. Let T € L(X) be a subadmissible operator with Dunford’s property (C).
Assume that S € L(Y) is an admissible extension of 7. Then, by Theorem 7
X7(F) = Er(F) for all closed F C C. Since T has property (C), Er(F) =
Xp(F) is closed, and hence T is admissible.

An operator T € L(X) has property (8). if for every open set U C C,
whenever f, : U — X is a sequence of C*° X —valued functions for which
(T = A) fn(A) — 0 uniformly on compact subsets of U, it follows that f, — 0 in
the same topology. It is clear that if T has property (8). then T has property
(B). It is well known [2] that the property (8). characterizes those operators
with some generalized scalar extension.

Corollary 9. Every operator with property (8). is admissible.

Proof. Let T € L(X) be an operator with property (3).. Then T has property
(B) and hence T has property (C). It follows from Corollary 4.5 [2] that T' has
a generalized scalar extension. If § € L(Y) is a generalized scalar extension
of T then Egs(F) = Xg(F) for all closed F C C. By Theorem 7, we have
Er(F) = Xr(F) for all closed F C C. Since T has property (C), Xr(F) is
closed and hence T is admissible.

In [14], M. Putinar shows that all hyponormal operators are similar to a
subscalar operator, that is, subscalar is similar to the restriction of a general-
ized scalar operator to one of its closed invariant subspaces. Thus we have the
following corollary.

Corollary 10. Every hyponormal operator on a Hilbert space is admissible.

In [2], Eschmeier and Putinar have shown that an operator T € L(X) has
property (8)e if and only if T is subscalar. Thus we have the following corollary.

Corollary 11. Every subscalar operator on a Banach space is admissible.
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