REAL WEIGHT FUNCTIONS FOR THE CIRCLE POLYNOMIALS BY THE REGULARIZATION

  • Lee, J.K. (Department of Mathematics, SunMoon University) ;
  • Lee, C.H. (Department of Mathematics, Hoseo University) ;
  • Han, D.H. (Department of Mathematics, SunMoon University)
  • Published : 2010.01.30

Abstract

We consider the differential equation $$(x^2\;-\;1)u_{xx}\;+\;2xyu_{xy}\;+\;(y^2\;-\;1)u_{yy}\;+\;gxu_x\;+\;gyu_y\;=\;\lambda_nu,\;(*)$$ where $\lambda_n\;=\;n(n\;+\;9\;-\;1)$. We show that the differential equation (*) has a polynomial set as solutions if $g\;{\neq}\;-1$, -3, -5, $\cdots$. Also, we construct an orthogonalizing distributional weight for g < 1 and $g\;{\neq}\;1$, 0, -1, $\cdots$ by regularizing a one-dimensional integral with a singularity on the endpoint of the interval.

Keywords

References

  1. C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment problem, Math. Anal. 243 (1979), 163-169. https://doi.org/10.1007/BF01420423
  2. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Thicomi, Higher transcendental functions, Vol. II, MacGraw Hill, New York, 1953.
  3. I. M. Gel'fand and G. E. Shilov, Generalized functions Vol. 1, Academic Press, N. Y. and London, 1964.
  4. Y. J. Kim, K. H. Kwon and J. K. Lee, Orthogonal polynomials in two variables and differential equations, J. Comp. Appl. Math. 82 (1997), 239- 260.
  5. T. H. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and Applications of Special Functions, R. Askey Ed. , Academic Press, New York, 1995.
  6. H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. seri 4 (1967), 325-376.
  7. K. H. Kwon, J. K. Lee and L. L. Littlejohn, Orthogonal polynomial eigenfunctions of second order differential equations, Trans. Amer. Math. Soc. 353 (2001) , 3629-3647. https://doi.org/10.1090/S0002-9947-01-02784-2
  8. L. L. Littlejohn, Orthogonal polynomial solutions to ordinary and differential equations, Lecture Notes in Math. 1329 (1988), 98-124
  9. Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 no. 3 (1993), 783-794. https://doi.org/10.1137/0524048