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REAL WEIGHT FUNCTIONS FOR THE CIRCLE
POLYNOMIALS BY THE REGULARIZATION

J. K. LEE*, C. H. LEET AND D. H. HAN

ABSTRACT. We consider the differential equation
(22 — Dugs + 2zyusy + (y° - Duyy + goue + gyuy = Anu, *

where A, = n(n + g — 1). We show that the differential equation (*) has
a polynomial set as solutions if g # —1,—3,-5,---. Also, we construct
an orthogonalizing distributional weight for g < 1 and g # 1,0,—1,--- by
regularizing a one-dimensional integral with a singularity on the endpoint
of the interval.
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1. Introduction

In 1967, Krall and Sheffer[6] posed and partially solved the problem: classify
all orthogonal polynomials which satisfy a second order differential equation of
the form

Llu] := Auge + 2Bugy + Cuyy + Duy + Euy = Apu, n=0,1,2,---, (1L.1)

where A(z,y),-- -, E(z,y) are polynomials and )\, is the eigenvalue parameter.

Krall and Sheffer found necessary and sufficient conditions for weak orthog-
onal polynomials (see Definition 2.1) to satisfy the differential equation (1.1)
under the assumption that A\, # X\, for m # n. These conditions were ex-
pressed in terms of moments {0, }5%,,—, of orthogonalizing measure o. The
moment o, is defined by

Omn = {0, 27Yy") = // z™y" do < o0.
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Littlejohn[8] gave simpler moment equations for the differential operator L[-]:
M, o] := (Ao)y + (Bo)y — Do =0, (1.2)
Mj[o] := (Bo), + (Co)y — Eo = 0. (1.3)
In this paper, we consider the differential equation
(2 = Dugg + 20yugy + (42 — Duyy + gzus + gyuy =n(n+g— Lu.  (1.4)
The orthogonality for polynomial solutions of (1.4) had been known for the
special cases: g =2 [2]. For g > 1, we know the explicit expression of the weight
function (see {6] and [8]). In [7], we know that (1.4) has orthogonal polynomials
as solutions if ¢ # 1,0, —-1,--- .

It is quite complicated to find polynomial solutions to the differential equation
(1.4). To do this, we introduce a kind of power series based on the matrix-vector
notation. By this method, we show that the differential equation (1.4) has a
polynomial set as solutions if and only if ¢ # —1,—-3,-5,....

Although (1.4) has orthogonal polynomial solutions for g # 1,0, —1,... the
representation of their orthogonalizing moment functional is not known except
for g > 1. Our main results are concerned with the construction of their orthog-
onalizing distributional weight by using the regularization of an one-dimensional
integral with a singularity.

2. Preliminaries

We consider the set P of polynomials in z and y. The set of all polynomi-
als degree < n is denoted by P,. By a polynomial set (PS), we mean a se-

oo n
quence {¢n_j7j($, y)} - of polynomials such that deg¢,_;; = n for each
n=0,j=
n >0 and {¢n_j7j(x,y)} o is linearly independent modulo P,_;. We denote
]:
(Ano, Pn—1,1," - , don)T by an (n + 1)-dimensional column vector ®,,(z,y) and a
PS {6nss@mv)} _ by {Eale 0},

A PS {Pn(z,y)}22, is called to be monic if for each m,n > 0 Pp, n(z,y) has
the form

Prn(z,y) =2™y" + Ron(z,y), Rm,n(zy Y) € Prgn—1-

Any linear functional on P will be called a moment functional. For a moment
functional o and m € P, we denote o(w) by (o, 7). The action of o is extended
to a matrix Q(z,y) of polynomials through the formula (o, Q) = ({0, Q;;)) . For
any moment functional o, we define the partial derivatives o, and o, of o by
the formula

(U:m ¢> = (0-7 ¢I> ’ (Uya ¢> - <O', ¢y>
and define the multiplication by a polynomial ¢ by the formula

(Yo,9) = (0, ¥9) .
Note that (04)y = (0y)z, (¥0)z = Y0 + Yo, and (Yo), = Yyo + Yoy.
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Definition 2.1. [4] A PS {®,(z,y)}5%, is a weak orthogonal polynomial system
(WOPS) relative to o if there is a nonzero moment functional ¢ such that

(0,pmndr1) =0 ifm4+n#£k+1

We call {®,,}22, an orthogonal polynomial system (OP.S) (respectively, a positive-
definite OPS) relative to o if there are nonzero (respectively, positive) constants
K, such that

<Ua ¢mn¢kl> = Kmn(smkénb

Definition 2.2. [4] A moment functional o is quasi-definite (respectively, positive-
definite) if there is an OPS (respectively, a positive-definite OPS) relative to o.

From Definition 2.1 and 2.2, we see that a PS {®,(z, y)}§° is an OPS (respec-
tively, a positive-definite OPS) relative to o if and only if (g, ®,,®1) = Hpdmn
and H,, := {0, ®,97) is a nonsingular (respectively, a positive-definite) diagonal
matrix.

For any PS {®,(z,y)}5°, there is a unique moment functional o, which is
called the canonical moment functional of {®,,(z, y)}§°, defined by the conditions

(o, 1y =1, {o,¢mn) =0,m+n>1.

Note that if a PS {®,(z,y)}5° is a WOPS relative to o, then o is a nonzero
constant multiple of the canonical moment functional of {®,(z,y)}&.

Theorem 2.1. [9] For any PS {®,(z,y)}5°, the following statements are equiv-
alent.

(i) {®n(z,y)}5° is a WOPS relative to a quasi-definite moment functional
.
(i) Forn >0 and i = 1,2 there are matrices An; of order (n+ 1) x (n+2),
By of order (n+1) X (n+ 1)and Cy; of order (n + 1) x n such that
(CL) 2;®n = Ani®pi1 + Bri®n + Cry®pny (xl =x,T2 = y)7
(b) rank C,, = n+ 1, where C,, = [Cp1, Cn2) -

Now, we return to a PS {®,(x,y)}° satisfying differential equation (1.1).

Definition 2.3. [6] The differential equation (1.1) is admissible if A,, # A, for
m #n.

We know that the differential equation (1.1) is admissible if and only if the
differential equation (1.1) has a unique monic PS as solutions. In section 2, we
try to find polynomial solutions when (1.4) is not admissible.

Theorem 2.2. [4, 6] If the differential equation (1.1) has a WOPS {®,}§° as
solutions, then the canonical moment functional o of {®,(z,y)}5° satisfies
M, o] := (Ao), + (Bo)y — Do =0, (2.1)
M,lo] := (Bo), + (Co)y — Ea =0. (2.2)
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We call M,[o] = 0 and Ma[o] = 0 the moment equations for the differential
equation (1.1).

Theorem 2.3. [4] For any OPS {®,(z,y)}$° relative to o, the following state-
ments are equivalent.
(i) {®n(z,y)}8° satisfy the differential equation (1.1).
(ii) o satisfies the moment equations Mi[o] = Ms[o] = 0.
(iii) oL[-] is formally symmetric on polynomials in the sense that

(L[Plo,Q) = (L[Q]o, P) for all P,Q € P.

3. Monic polynomial solutions

In this section, we suggest a systematic method of simultaneously finding a
monic PS satisfying the differential equation of the form

Llu] =(az? + diz + e1y + f1)uze + (202y + doz + exy + f2)tzy
+(ay? + dsz + e3y + fa)uyy + (92 + hi)uz + (9y + ha)uy  (3.1)
= )‘nu7

where A\, = an{n — 1) + gn.

Let H,, be a vector space of homogeneous polynomials of degree n and denote
a monic basis {z",z" 'y, -+ ,y"} of H, by the (n + 1)-dimensional column
vector
x" = ($n7 xn_lya T ’yn)T.
Then the multiplication by independent variables as a linear operator from H,,
to H,41 can be written as

zx" = Mix"t yx™ = M2x"
and the partial differentiations with respect to z and y (as a linear operator from
Hy, to Hy—1) has the matrix representations
9:x" = Dix""!  9,x" = D2x""' (D} =D =0),
where
My = [In41]0], M3 = [0]Ln41],

D, = [Diag(n,n -1, 71)|0]T, D = [0|Diag(1,27 N ,’I’L)]T (3.2)

and I, is the n x n identity matrix.

Lemma 3.1. Let M}, and D}, (i = 1,2) be matrices defined by (3.2). Then we
have the followings: for each n > 0,
(1) DpMy_y + DIME_y = nlnyy;
(ii) MT%MT%-F]. = Mr%Man%
(i) D,DZ_, = D3Dy_y;
(iv) DpDy My oMy + 2DLDE_ My M2, + D2D?_ M2 ,M2_, =
n(n - l)In—i-l'
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Also, we have
Lx*] = Mx? 4 BpxP =1 4 Opxt 2, (3.3)
where By, and Cy are given by
Bi = DDy _y(diMy_y + et M{_5) + DiDi_y(daMj;_ + ea M)
+ DED}_ (dsMy_g + esM_) + haDy, + ha D7,
Ok = fiDiDy_y + f2DiDf_y + fsDiDi_y.
Proof. (i) follows easily from the fact that
(DpMy_y + DiME_y)x" = Dy My _1x" + Dy M7 x"
= Dlax"!' + D}yx""! = xDix" ! 4 yD2x" !
= 20, X" + yoyx" =nx".
(ii) follows from the fact that z(yx™) = y(azx") and
o(yx") = aM>x"T! = Mimx = MM}, x"1?,
y(zx™) = yMIx" ! = Mpiyx"" = MEMZ, x"
(iii) and (iv) are similarly proved. We leave the proof of (3.3) to the reader

since it can be shown by the careful use of (i), (ii), (iii) and (iv).

3.1. A kind of power series solution. Now we introduce a method based on
the vector notation. It is similar to a power series method in ordinary differential

equations. Using this method we find simultaneously a monic PS satisfying the
differential equation (3.1).

Theorem 3.2 Let the differential equation (3.1) have a monic PS {P, }5>, given
by

n
P, = ZA?xj ,
3=0
where A7 is an (n + 1) x (j + 1) matriz for 0 < j < n and A} = I,41. Then
A} (0 < j <n) satisfies a recursion formula

(/\n - )‘j)A;;L = A?+1Bj+1 + A?+20j+2 (A?LH =0,0<j<n- 1)- (3-4)

Proof. Applying Lemma 3.1, we have the following
n—1 ) . ]
LIP] = AnxX" + Box™ ! + Cux" 2 4+ D AP + Bx! T+ CyxI )
§=0
= AX" + (A 1A7 | + Bo)x" "+ Ay 0AT 5+ AT By + Cyp)x" 2
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n—3
+ Z()‘jA;L + Af1Bj1 + A7 50 42)%7
5=0

n—1
=M [x" 4+ AT
=0

By comparing the coefficients of x’ (0 < j < n — 1), we obtain the following
recurrence relations for A;? :

(An — An—1)Al_| = By,

(An = An—2)An_5 = AL _Bn_1+ Cy,

(An = Aj)AF = A7 Bji + A7 5Ci0 (0S5 <n—3),
which is (3.4) if we put A7, =0 and A7 = I,,;.

3.2. Monic circle polynomials. We apply Theorem 3.2 to a specific differen-
tial equation

(2% — Vugy + 2zyuzy + (Y7 — Duyy + gzus + gyuy = Au, (3.5)

where A, = n{(n+ g — 1) (The polynomial solutions to the differential equation
(3.5) are called the circle polynomials). Then we have

(An = ’\j)A;‘L = ;L+2Cj+2 = —A;'L+2 (D;+2D;1'+1 + D;2'+2D;2'+1)
since B; = 0 . Note that
Cjx) ™ = — (DID}_, + D?D?_))xI™2 = (=02 - 2)x’. (3.6)

Theorem 3.3. Let N be a nonnegative integer. Then

(i) If the differential equation (3.5) is admissible, then it has a unique monic
PS as solutions.
(ii) If g = —2N, then the differential equation (3.5) has infinitely many
monic PS as solutions.
(iii) If g = —2N —1, then the differential equation (3.5) can not have any PS
as solutions.

n
Proof. IfP,, = Z A;-‘xj satisfies the differential equation (3.5), then by Theorem

3=0
3.2, A7 (0 < j <'n — 1) satisfies the following recursion relations
()‘n - )‘n—l)AZ—1 =0, (3-7)
(An = Aj)A} = A7 5,Cj40 (07 <n—2). (3.8)

Observe that

(a) P, becomes a solution to the differential equation (3.5) if we can deter-
mine A7 (0 < j < n— 1) so that (3.7) and (3.8) are satisfied ;
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(b) A? can be determined if j # —g — n + 1 since
Ap—A=n=j)n+j+9g-1)=0 = j=-n—g+1.

(i) It is obvious since A7 is uniquely determined since A, — A; # 0 for 0 <
i<n-—1.

(ii) Let g = ~2N. Then for 0 < j < n — 1, we consider four cases:
Case 1. n < N+1: X\, —); = (n—j)(n+j—2N-1) <0Osince0 < j <n—-1< N
and n < N + 1. Thus all A} are uniquely determined from (3.7) and (3.8).
Case 2. n = N+1:Ayy1 — A = 0 only for j = N. Thus all A;VH are
determined once we fix AN '
Case 3. N+1<n <2N+1:In this case, A?_; = 0since A\, — A1 =

2n —2N —2 > 0. If n is even (respectively, odd), then A, — \; # 0 for even
(respectively, odd) j. Hence we can determine uniquely

A?L—27 2—47 U aAg (respeCtiveIY7 A?)
Using the fact that A7 _; = 0 (since Ay —Ap—1 = 2n—2N-2> 0)and A\, —X; #0
except for j = 2N + 1 — n, we can see that
A=Ay 5= = AZntz—pn = 0.
Once we fix Ay, _,,, then we can determine successively
gN—l—m AgN—S—n? e )A? (respectively, Ag)

Case 4. n > 2N +1: All A} are uniquely determined since A, — A; > 0 for
0<j<n-1.

Therefore (ii) is proved.

(ili) Let g = —2N — 1. Then

A=A =n—5)n+j—-2N-2)=0 < j=2N+2-n,
which means that

Al =A% s=---= A =0if n is even;
Al 1 =A, _3=---=A} =0if nis odd.

Case 5. n < N+1:Wehave A, —A; = (n—j)(n+j— 2N —2) < —1 since
71<n—1<Nandn< N +1. Then all A;-“s are uniquely determined.

Case 6. N+2<n<2N +2: Let n be even and n = 2m. Then Aom — A #0
except for j = 2(N 4+ 1 —m) and we have from (3.8)

C(2 m

AQm —
2m—2 )
Ao — A2m_2
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A2m — C2mc2m—2
24 Ao — Aam—2)(Aom — Aam—a)’

ComCom—2- - Cany6—2m
— A2m—2)(Az2m — Azm—4) - - (A2m — AaN41-2m)’

2m _
A2N+4—2m - ()\2
m

0= A§7£+4—2m02N+4—277V
Hence
ComCam—2 - Conge-—2mCanta—2m = 0.
However, this can not happen because by (3.6) we can see that

IN+2-2 2 02\2m—N_2m
ComCom—2- - Cant6-2mCantacomx™ 1272 = (=07 — 82)*™~Nx*™ # 0.

Note that the order of a partial differential operator (—92 —82)*™ " is at most
2m and
(32 — oR)m—Ny2m L,
Thus (3.5) can not have a monic PS solution of degree n in this case.
Let n be odd and n = 2m + 1. Since A, — A; =0 for only j = 2N —2m + 1,
we have the similar result

Com+1Com—1 - Con—2mt5Can—2m43 = 0.

This can not happen since

2N-2 1 2 2\2m—N 2 1
CZm+IC2m—1 e CQN_2m+3X m+ = (—636 bt 8y) m X m+ 75 0.

Case 7. n > 2N +3: We have A, — A, = (n — j)(n +j — 2N —2) > 1 since
n—j>landn+j—-2N-22>n—-—2N -2 > 1. Then all A? are uniquely
determined.

Thus (iii) is proved. O

4. Real weight for the circle polynomials

In this section, we construct a real weight function for the circle polynomials.
Let o be the canonical moment functional of a PS {®,(z,y)}2, satisfying the
differential equation

(2% = V)ugs + 20yUsy + (U2 — Duyy + g2us + gyu, =n(n+g—Lu.  (4.1)

Theorem 4.1. [4] Let {®,(x,y)}2, be a WOPS relative to a moment func-
tional 0. Then the following statements are equivalent.

(1) {®n(z,y)}2o satisfy the differential equation (4.1).
(i) o satisfies the moment equations

Ml[a] = ((x2 - 1)0)1 + (J:yO’)y —gzo =0, (4'2)
M;lo] = (zyo)s + ((y* — 1)o)y — gyo = (4.3)
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To establish the orthogonality of the circle polynomials, we should prove that
the canonical moment functional ¢ of the circle polynomials satisfies the moment
equations (4.2) and (4.3) and that o is quasi-definite.

We now recall a classical result on the multi-dimensional moment problems
[1], which states that for any sequence {/‘a}mzo of real numbers, there exists a

signed measure y on R* such that

Bo = / x%du(x) (e Nf; x= (z1,20,- - ,2) € R¥), (4.4)
Rk
where NE .= {(al,ag,--- sap)|a; € No, 1 <4 < k}, x* = zfzg? - zp* and
k
la] = Zai. From this fact, the orthogonality for any OPS {®,(x)} in k vari-
i=1

ables can be rewritten as the following integral form
| #a005(x) du(x) = Ko, .5 N

where K, # 0 is a nonzero constant and u is a signed measure on R*. The
measure ;4 will be called a real weight function of a PS {®,(x)}.

As regarding to the circle polynomials, it is well known (see [5, 6, 8]) that if
g > 1, the differential equation (4.1) has a positive-definite OPS as solutions and,
by solving the moment equation (4.2) and (4.3) in the classical or distributional
sense, we can find a real (distributional) weight

wiz,y) = (1-2° — )T (@ +4* <)

whose action on a polynomial ¢(x,y) is given by the integral

<(1 — 2 ) (e, y)> = //D oz, )1 —a® —y?)*T dedy. (4.5

Although there is a quasi-definite (not a positive-definite) OPS satisfying the
differential equation (4.1) for the case ¢ < 1 and g # 0, —1, - - - and the existence
of orthogonalizing weight for them is guaranteed, we still do not know the integral
representation of the orthogonalizing moment functional o satisfying the moment
equations (4.2) and (4.3).

In the following, we construct an orthogonalizing real {distributional) weight
by regularizing the integral (4.5).

Let A= 9=

and —n — 1 < Re A < —n. The regularization of the integral

1
(1= 2y 0) 1= / (1 - 2 p(z) de
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n

2‘:1 <k><1) o] dr

is defined by the formula (see [3])
k=0

/01(1 —z) p(z) dz = /01(1 — ) [
(k)

(1)
+ Z k'(k n 5 T
It is not hard to see that

(1-2)1 - 2)py = 1 - 2)hi,

d
E(l - m)f}m] =-M1- )[o 1] T 6(=),

L (@ - D) =@~y + ) (1 -2y

Since (4.5) can be written in the polar coordinates as the following form
1 o
<(1 — 22 — )N, cp(x,y)> = / / r(1 — r2)*p(r cos 8, r sin §) dfdr
0 —m
1
=/ (1 — ) ®(r) dr,

0

it is natural to define the regularization of the integral (4.5) for —n—1 < ReA <
—n by

(1= 2% = )%, (1) = (1 =)0 D)), (46)

where

S(ry=r(1+ r)’\/ @(r cos,rsinb) do.
Lemma 4.2, Let —n — 1 < Re X < —n and let the regularization of w(z,y) =
(1 — 22 — ) defined by (4.6). Then we have

) _

5p (17 —v)k =2l -2" -y, (4.7)

) _

a1 2? —y?)) = —2xy(1 - 2® - ¢*)} 7, (4.8)
1-2* - )1 -2 -¢*)} = (1 - 2" )} (4.9)

Proof. We prove (4.7) only since (4.8) is proved similarly. In polar coordinates,
we have the following
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S

51— 2 =P el ) = (-2~ e )

T
=((1- r)f}m],r(l +T)’\/ <cos€% - Mg) o(rcosf,rsin 6) d9>

—T7

= <(1 =)y (1 +T)A6£r/

-7

™

rcos Bp(r cos B, rsin ) d6> .

ki

If we put ¥(r) = r/ @(r cos @, rsin @) cos 8df, then ¥(0) = 0 and we can see

the following

(L= QL+ 0
= (1= (B - A1+ )
= —<dii(1 =)o (L P EE)) = AL = P (L4110
= (= A=+ 600, 1+ ) = A=) (Lt o)

= 20((1 =2 — ) wle, ) ),
which implies (4.7).

Next, if we put ®(r) = / (7 cos @, rsinf) df, then we have the following

(=22 =) (1 - 22 — 22}, o(e,0))
= (-2 =)L (1=~ yP)p(a,p))
= (A= r @+ 1A= 12)8(r)

= (A= ra+ ) ae),
which implies (4.9).

Now we are ready to state our main theorem:
g-3
Theorem 4.3. Letg <1andg#1,0,—1,---. Thenty:= (1-2?—y?).7 isa
distributional weight for the circle polynomials satisfying the differential equation
(4.1).

To prove Theorem 4.3, we need the following:

Lemma 4.4. If g # 1, then the moments equations (4.2) and (4.3) are equivalent
to the modified moment equations

Mijo] = (1 = 2* —y?)0)e — (1 — g)zo =0, (4.10)
isfo] = (1 = 22 =)o), ~ (1 — g)yo = 0. (4.11)
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Proof. In the first, we will show that
Loy = YOy (4.12)
Differentiating (4.11) with respect to x, we see that

(1—glyoe = (1 — 2° — y*)0)e)y = (1 — g)z0)y = (1 — g)z0y

which implies (4.12) since g # 1.
Using (4.12), we can obtain the following

((ac2 —1)0); + (zyo)y = ((az2 + y2 —1)o — y2a)x + zo + zyo, = gzo,

which is (4.2). Similarly, we can derive (4.3). Thus we have showed that (4.10)
and (4.11) imply (4.2) and (4.3).

Conversely, (4.2) and (4.3) imply (4.10) and (4.11). We leave the proof to the
reader since it is a simple calculation.

Proof of Theorem 4.3. We know that the moment equations (4.2) and (4.3) has
a unique solution since the differential equation (4.1) is admissible. By Lemma

-3
4.4, it is sufficient to prove that 7, := (1 —z2 —y2)_gﬁ_ satisfies (4.10) and (4.11).

-3
Let —n——1<Reg

< —n. Since by Lemma 4.2 we can see that

5] a-1
(A-a?=9m) = (-2 =427 = (1-gpr,

0 FE
((1 —a? - yQ)Tg)y = 51" 2? — )7 = (1- gy
Thus our assertion is proved.

Remark 4.1. If ¢ = —2N (N > 0), then the differential equation (4.1) has

infinitely many PS as solutions. On the other hand, since the distribution (1 —
_2N43

x*—y?); 2 isone of the solutions to the moment equations (4.2) and (4.2), we
expect that there exists at least one WOPS satisfying the differential equation
(4.1).

For example, the monic polynomial solutions {P,,(z,y)}5%, of the differential
equation (4.1) with g = 0 are uniquely determined except for the case that n = 1.
If we take

Ppy=x2+4+a, Py=y+0 (a,pB arbitrary real number)

and require that {P,(z,4)}%, is a WOPS relative to the distribution (1 — 2% —
3

y?)1 2, we can see that o = 8 = 0.
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