References
- Azar, Y., Broder, A. and Karlin, A. (1994), On-line load balancing, Theoretical Computer Science, 130, 73-84. https://doi.org/10.1016/0304-3975(94)90153-8
- Azar, Y., Naor, J. and Rom, R. (1995), The competitiveness of online assignments, Journal of Algorithms, 18, 221-237. https://doi.org/10.1006/jagm.1995.1008
- Bar-Noy, A., Freund, A., and Naor, J. (2001), Online load balancing in a hierarchical server topology, SIAM Journal on Computing, 31, 527-549. https://doi.org/10.1137/S0097539798346135
- Chassid, O. and Epstein, L. (2008), The hierarchical model for load balancing on two machines, Journal of Combinatorial Optimization, 15, 305-314. https://doi.org/10.1007/s10878-007-9078-0
- Crescenzi, P., Gambosi, G., and Penna, P. (2004), On-line algorithms for the channel assignment problem in cellular networks, Discrete Applied Mathematics, 137, 237-266. https://doi.org/10.1016/S0166-218X(03)00341-X
- Efraimidis, P. S. and Spirakis, P. G. (2006), Approximation schemes for scheduling and covering on unrelated machines, Theoretical Computer Science, 359, 400-417. https://doi.org/10.1016/j.tcs.2006.05.025
- Fishkin, A. V., Jansen, K. and Mastrolilli, M. (2008), Grouping techniques for scheduling problems : Simpler and faster, Algorithmica, 51, 183-199. https://doi.org/10.1007/s00453-007-9086-6
- Garey, M. R. and Johnson, D. S. (1979), Computers and intractability : A guide to the theory of NP-completeness, Freeman, New York.
- Glass, G. A. and Kellerer, H. (2007), Parallel machine scheduling with job assignment restrictions, Naval Research Logistics, 54, 250-257. https://doi.org/10.1002/nav.20202
- Horowitz, E. and Sahni, S. (1976), Exact and approximate algorithms for scheduling nonidentical processors, Journal of the Association for Computing Machinery, 23, 317-327. https://doi.org/10.1145/321941.321951
- Huo, Y. and Leung, J. Y.-T. (2010), Parallel machine scheduling with nested processing set restrictions, European Journal of Operational Research, 204, 229-236. https://doi.org/10.1016/j.ejor.2009.10.025
- Hwang, H.-C., Chang, S. Y. and Lee, K. (2004), Parallel machine scheduling under a grade of service provision, Computers and Operations Research, 31, 2055-2061. https://doi.org/10.1016/S0305-0548(03)00164-3
- Jansen, K. and Porkolab, L. (2001), Improved approximation schemes for scheduling unrelated parallel machines, Mathematics of Operations Research, 26, 324-338. https://doi.org/10.1287/moor.26.2.324.10559
- Ji, M. and Cheng, T. C. E. (2008), An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan, Information Processing Letters, 108, 171-174. https://doi.org/10.1016/j.ipl.2008.04.021
- Jiang, Y. (2006), Online scheduling on parallel machines with two GoS levels, Journal of Combinatorial Optimization, 16, 28-38. Also in : Lecture Notes in Computer Science, 4041, 11-21.
- Jiang, Y., He, Y., and Tang, C. (2006), Optimal online algorithms for scheduling on two identical machines under a grade of service, Journal of Zhejiang University SCIENCE A, 7, 309-314.
- Kafura, D. G. and Shen, V. Y. (1977), Task scheduling on a multiprocessor system with independent memories, SIAM Journal of Computing, 6, 167-187. https://doi.org/10.1137/0206014
- Lee, K., Leung, J. Y-T., and Pinedo, M. L. (2009), Online scheduling on two uniform machines subject to eligibility constraints, Theoretical Computer Science, 410, 3975-3981. https://doi.org/10.1016/j.tcs.2009.06.032
- Lee, K., Leung, J. Y-T. and Pinedo, M. L. (2010), Scheduling jobs with equal processing times subject to machine eilibility constraints, Journal of Scheduling, DOI 10.1007/s10951-010-0190-0.
- Leung, J. Y.-T., and Li, C.-L. (2008), Scheduling with processing set restrictions : A survey, International Journal of Production Economics, 116, 251-262. https://doi.org/10.1016/j.ijpe.2008.09.003
- Li, C.-L. and Wang, X. (2010), Scheduling parallel machines with inclusive processing set restrictions and job release times, European Journal of Operational Research, 200, 702-710. https://doi.org/10.1016/j.ejor.2009.02.011
- Li, W., Li, J. and Zhang, T. (2009), Approximation schemes for scheduling on parallel machines with GoS Levels, Lecture Notes in Operations Research-Operations Research and Its Applications, 10, 53-60.
- Lin, Y. and Li, W. (2004), Parallel machine scheduling of machine-dependent jobs with unit-length, European Journal of Operational Research, 156, 261-266. https://doi.org/10.1016/S0377-2217(02)00914-1
- Lim, K., Lee, K., and Chang, Soo Y. (2010a), On optimality of a greedy approach to the online scheduling under eligibility constraints, submitted for publication.
- Lim, K., Chang, Soo Y., Park, J., and Lee, K. (2010b), Online and semi-online scheduling of two and three machines under a GoS provision, submitted for publication.
- Liu, M., Chu, C., Xu, Y., and Zheng, F. (2010), Semi-online scheduling on 2 machines under a grade of service provision with bounded processing times, Journal of Combinatorial Optimization, DOI : 10.1007/s10878-009-9231-z.
- Liu, M., Xu, Y., Chu, C., and Zheng, F. (2009), Online scheduling on two uniform machines to minimize the makespan, Theoretical Computer Science, 410, 2099-2109. https://doi.org/10.1016/j.tcs.2009.01.007
- Ou, J., Leung, J. Y.-T., and Li, C.-L. (2008), Scheduling parallel machines with inclusive processing set restrictions, Naval Research Logistics, 55, 328-338. https://doi.org/10.1002/nav.20286
- Park, J., Chang, Soo Y., and Lee, K. (2006), Online and semi-online scheduling of two machines under a grade of service provision, Operations Research Letters, 34, 692-696. https://doi.org/10.1016/j.orl.2005.11.004
- Pinedo, M. (1994), Scheduling : Theory, algorithms, and systems, New York : Prentice Hall.
- Tan, Z. and Zhang, A. (2009), A mathematical programming approach for online hierarchical scheduling, Lecture Notes in Computer Science, 5573, 438-450.
- Tan, Z. and Zhang, A. (2010a), A note on hierarchical scheduling on two uniform machines, Journal of Combinatorial Optimization, 20, 85-95. https://doi.org/10.1007/s10878-008-9195-4
- Tan, Z. and Zhang, A. (2010b), Online hierarchical scheduling : An approach using mathematical programming, Theoretical Computer Science, In press, Corrected Proof.
- Woeginger, G. J. (2009), A comment on parallel-machine scheduling under a grade of service provision to minimize makespan, Information Processing Letters, 109, 341-342. https://doi.org/10.1016/j.ipl.2008.11.008
- Wu, Y. and Yang, Q. (2010), Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service provision, Lecture Notes in Computer Science, 6124, 261-270.
- Zhang, A., Jiang, Y., and Tan, Z. (2008), Optimal algorithms for online hierarchical scheduling on parallel machines, Manuscript.
- Zhang, A., Jiang, Y., and Tan, Z. (2009), Online parallel machines scheduling with two hierarchies, Theoretical Computer Science, 410, 3597-3605. https://doi.org/10.1016/j.tcs.2009.04.007
- Zhou, P., Jiang, Y., and He, Y. (2007), Parallel machine scheduling problem with two GoS levels}, Applied Mathematics : A journal of Chinese Universities (Series A), 22, 275-284, (in Chinese).